Трансформаторы тока назначение и принцип действия

Трансформаторы тока назначение и принцип действия

Общие понятия

Трансформатор тока (ТТ) маркировка ГОСТ 7746-2001 – это устройство является одним из видов «измерительного трансформатора», который предназначен для получения переменного тока в его вторичной обмотке, где величина преобразованного напряжения пропорциональна текущей измеряемой величине. Номинальная мощность трансформаторов может быть 25, 40, 63, 100, 160 кВА.

Трансформаторы тока, у которых класс точности 0,2; 0,5; 1; 3; 10 могут снизить высокие проходные токи напряжения на более низкие, этим они обеспечивают удобный способ безопасного контроля электроэнергии в переменной линии передачи с использованием стандартного амперметра. Принцип действия трансформатора тока ничем не отличается от обычного.

Существуют разные трансформаторы, типы приборов с различными пропускными способностями (суммирующий СЭЩ, ТТИ-200 5, 5 5, 300 5, 0 66, 1 1, 400 5, 150 5, ТК 20, опорный ТОЛ 10,  ТВЛМ, ABB, ИЭК, ТЗЛМ, ТЛК, ТСН, ТФЗМ, ТЛМ, ТЛО, ТОП, ТПЛ, ТПОЛ).

Трансформатор тока
Фото – Трансформатор тока

Видео: устройство трансформатора тока ТФРМ 750

Это интересно: Трансформаторы для галогенных ламп: разбираемся во всех нюансах

Где применяют такие приборы

Они позволяют повысить тот потенциал, который вырабатывает источник переменного электричества, установленный на электростанции, и передают его на большое расстояние, при этом напряжение бывает высоким (от 110 до 1150 кВ). Этим уменьшают потерю энергии, и возможно применять провода меньшего сечения.

Передаваемое напряжение от высоковольтной линии снижают, применив преобразователи до 600, 380, 220 и 127 В. На таких показателях работают бытовые приборы в жилых домах и промышленные — на производствах.

Трансформаторы применяют и на подстанциях, здесь они необходимы для того чтобы уменьшить напряжение, которое подают к контактному двигателю или вспомогательной цепи.

Такие аппараты бывают тяговыми, лабораторными и др., но все они считаются силовыми. Их применяют для подключения электроприборов, электросварки и др. Трансформаторы имеют одну- , три фазы, две- и множество обмоток.

2. Устройство трансформатора

2.1. Магнитопровод. Магнитные материалы

Назначение магнитопровода заключается в создании для магнитного потока замкнутого пути, обладающего минимальным магнитным сопротивлением. Поэтому магнитопроводы для трансформаторов изготавливают из материалов, обладающих высокой магнитной проницаемостью в сильных переменных магнитных полях. Материалы должны иметь малые потери на вихревые токи, чтобы не перегревать магнитопровод при достаточно больших значениях магнитной индукции, быть достаточно дешевыми и не требовать сложной механической и термической обработки.

Магнитные материалы, используемые для изготовления магнитопроводов, выпускаются в виде отдельных листов, либо в виде длинных лент определенной толщины и ширины и называются электротехническими сталями.
Листовые стали (ГОСТ 802-58) изготавливаются методом горячей и холодной прокатки, ленточные текстурованные стали (ГОСТ 9925-61) только методом холодной прокатки.

Также применяют железноникелевые сплавы с высокой магнитной проницаемостью, например, пермаллой, перминдюр и др. (ГОСТ 10160-62), и низкочастотные магнитомягкие ферриты.

Для изготовления разнообразных относительно недорогих трансформаторов широко применяются электротехнические стали, имеющие небольшую стоимость и позволяющие трансформатору работать как при постоянном подмагничивании магнитопровода, так и без него. Наибольшее применение нашли холоднокатаные стали, имеющие лучшие характеристики по сравнению со сталями горячей прокатки.

Магнитопроводы из электротехнической стали

Сплавы с высокой магнитной проницаемостью применяют для изготовления импульсных трансформаторов и трансформаторов, предназначенных для работы при повышенных и высоких частотах 50 – 100 кГц.

Недостатком таких сплавов является их высокая стоимость. Так, например, стоимость пермаллоя в 10 – 20 раз выше стоимости электротехнической стали, а пермендюра – в 150 раз. Однако в ряде случаев их применение позволяет существенно снизить массу, объем и даже общую стоимость трансформатора.

Другим их недостатком является сильное влияние на магнитную проницаемость постоянного подмагничивания, переменных магнитных полей, а также низкая стойкость к механическим воздействиям – удар, давление и т.п.

Магнитопроводы из сплавов с высокой магнитной проницаемостью

Из магнитомягких низкочастотных ферритов с высокой начальной проницаемостью изготавливают прессованные магнитопроводы, которые применяют для изготовления импульсных трансформаторов и трансформаторов, работающих на высоких частотах от 50 – 100 кГц. Достоинством ферритов является невысокая стоимость, а недостатком является низкая индукция насыщения (0,4 – 0,5 Т) и сильная температурная и амплитудная нестабильность магнитной проницаемости. Поэтому их применяют лишь при слабых полях.

Магнитопроводы из магнитомягких прессованных ферритов

Выбор магнитных материалов производится исходя из электромагнитных характеристик с учетом условий работы и назначения трансформатора.

2.2. Типы магнитопроводов

Магнитопроводы трансформаторов разделяются на шихтованные (штампованные) и ленточные (витые), изготавливаемые из листовых материалов и прессованные из ферритов.

Шихтованные магнитопроводы набираются из плоских штампованных пластин соответствующей формы. Причем пластины могут быть изготовлены практически из любых, даже очень хрупких материалов, что является достоинством этих магнитопроводов.

Магнитопровод из плоских шихтовых пластин

Ленточные магнитопроводы изготавливаются из тонкой ленты, намотанной в виде спирали, витки которой прочно соединены между собой. Достоинством ленточных магнитопроводов является полное использование свойств магнитных материалов, что позволяет уменьшить массу, размеры и стоимость трансформатора.

Трансформатор с ленточным магнитопроводом

Тороидальный трансформатор из ленточного магнитопровода

В зависимости от типа магнитопровода трансформаторы подразделяются на стрежневые, броневые и тороидальные. При этом каждый из этих типов может быть и стрежневым и ленточным.

Стержневые.

В магнитопроводах стержневого типа обмотки располагается на двух стержнях (стержнем называют часть магнитопровода, на которой размещают обмотки). Это усложняет конструкцию трансформатора, но уменьшает толщину намотки, что способствует снижению индуктивности рассеяния, расхода проволоки и увеличивает поверхность охлаждения.

Схематичное изображение трансформатора стержневого типа

Трансформатор стержневого типа

Стержневые магнитопроводы используют в выходных трансформаторах с малым уровнем помех, так как они малочувствительны к воздействию внешних магнитных полей низкой частоты. Это объясняется тем, что под влиянием внешнего магнитного поля в обеих катушках индуцируются напряжения, противоположные по фазе, которые при равенстве витков обмоток компенсируют друг друга. Как правило, стержневыми выполняются трансформаторы большой и средней мощности.

Броневые.

В магнитопроводе броневого типа обмотка располагается на центральном стержне. Это упрощает конструкцию трансформатора, позволяет получить более полное использование окна обмоткой, а также создает некоторую механическую защиту обмотки. Поэтому такие магнитопроводы получили наибольшее применение.

Схематичное изображение трансформатора броневого типа

Трансформатор броневого типа

Некоторым недостатком броневых магнитопроводов является их повышенная чувствительность к воздействию магнитных полей низкой частоты, что делает их малопригодными к использованию в качестве выходных трансформаторов с малым уровнем помех. Чаще всего броневыми выполняются трансформаторы средней мощности и микротрансформаторы.

Тороидальные.

Тороидальные или кольцевые трансформаторы позволяют полнее использовать магнитные свойства материала, имеют малые потоки рассеивания и создают очень слабое внешнее магнитное поле, что особенно важно в высокочастотных и импульсных трансформаторах. Но из-за сложности изготовления обмоток не получили широкого применения. Чаще всего их делают из феррита.

Схематичное изображение тороидального трансформатора

Тороидальный трансформатор

Для уменьшения потерь на вихревые токи шихтованные магнитопроводы набираются из штампованных пластин толщиной 0,35 – 0,5 мм, которые с одной стороны покрывают слоем лака толщиной 0,01 мм или оксидной пленкой.

Лента для ленточных магнитопроводов имеет толщину от нескольких сотых до 0,35 мм и также покрывается электроизолирующей и одновременно склеивающейся суспензией или оксидной пленкой. И чем тоньше слой изоляции, тем плотнее происходит заполнение сечения магнитопровода магнитным материалом, тем меньше габаритные размеры трансформатора.

За последнее время наряду с рассмотренными «традиционными» типами магнитопроводов находят применение новые формы, к числу которых следует отнести магнитопроводы «кабельного» типа, «обращенный тор», катушечный и др.

Новые формы магнитопроводов

На этом пока закончим. Продолжим во второй части.
Удачи!

Литература:

1. В. А. Волгов – «Детали и узлы радио-электронной аппаратуры», Энергия, Москва 1977 г.
2. В. Н. Ванин – «Трансформаторы тока», Издательство «Энергия» Москва 1966 Ленинград.
3. И. И. Белопольский – «Расчет трансформаторов и дросселей малой моности», М-Л, Госэнергоиздат, 1963 г.
4. Г. Н. Петров – «Трансформаторы. Том 1. Основы теории», Государственное Энергетическое Издательство, Москва 1934 Ленинград.
5. В. Г. Борисов, – «Юный радиолюбитель», Москва, «Радио и связь» 1992 г.

Как работает устройство и конструкция трансформаторов

Первичная обмотка включения может быть либо плоской, либо представлять собой ролик из толстого провода, обернутого вокруг сердечника, проводника или шины через центральное отверстие.

Благодаря такой конструкции, трехфазный трансформатор переменного тока имеет первичную обмотку с минимальным количеством витков, что положительно влияет на эффективность работы, в частности, коэффициент трансформации.

Вторичная обмотка может иметь большее число витков катушки. Они намотаны на ламинированную основу магнитного материала с низкими потерями, который имеет большую площадь поперечного сечения. Плотность магнитного потока является низкой, при этом используя гораздо меньшую площадь поперечного сечения проволоки, номинальный ток практически не теряет своего напряжения. Эти вторичные обмотки обычно рассчитаны на стандартный показатель 1 Ампер или 5 Ампер. Это хорошо демонстрирует векторная диаграмма:

Векторная диаграмма
Фото – Векторная диаграмма

Назначение трансформаторов

Трансформаторы тока относятся к категории специальных вспомогательных приборов, используемых совместно с различными измерительными устройствами и реле в цепях переменного тока. Главной функцией таких трансформаторов является преобразование любого значения тока до величин, наиболее удобных для проведения измерений, обеспечения питания отключающих устройств и обмоток реле. За счет изоляции приборов, обслуживающий персонал оказывается надежно защищен от поражения током высокого напряжения.

Измерительные трансформаторы тока предназначены для электрических цепей с высоким напряжением, когда отсутствует возможность прямого подключения измерительных приборов. Их основное назначение заключается в передаче полученных данных об электрическом токе на измерительные устройства, подключаемые к вторичной обмотке.

Немаловажной функцией трансформаторов является контроль над состоянием электрического тока в цепи, к которой они подключены. Во время подключения к силовому реле, выполняются постоянные проверки сетей, наличие и состояние заземления. Когда ток достигает аварийного значения, включается защита, отключающая все используемое оборудование.

Это интересно: Защита трансформатора от перегрузки

Что такое трансформаторная нагрузка

Нагрузка подключается к выходу устройства согласно номинальной выходной мощности или величине рабочего тока системы. Физически трансформаторная нагрузка подключается как вторичная система. Эта система сохраняет выходные параметры устойчивыми, поглощая энергию, превышающую пороговую величину, или недостающую мощность, когда она опускается ниже допустимой границы. Нагрузка силовой трансформации является ссылкой на допуск к использованию.

Трансформатор – это устройство, которое перемещает энергию от одной системы к другой, например, к стандартной электрической сети. Он, как правило, представляет собой компонент модульного бокса, соединяющего систему энергетической компании с бытовыми системами. От фидеров трансформаторной подстанции отходят кабельные линии передач, подводимые к домам и предприятиям.

Эти системы работают на основе процесса, называемого индукцией. В этом случае две системы расположены достаточно близко друг к другу, чтобы электричество переходило из одной системы в другую. Нагрузка позволяет электричеству перемещаться в системе. Когда энергия течёт от источника питания по линии передачи, напряжение появляется в энергоприемниках. Этот процесс также является формой индукции – нагрузка и катушки трансформатора не касаются друг друга.

Система обеспечивает базовую стабильность качества электричества, подаваемого на объекты. Когда трансформатор работает слишком сильно, система снижает мощность. И при обратной картине, наоборот, заряженные катушки позволяют нагрузке добавлять дополнительную мощность в систему. Это предотвращает появление пиков в локальной системе, что увеличивает срок службы подключенной электроники.

В мире все естественным образом стремится к равновесию и стабильности. Система электроснабжения также стремится уравновесить потенциал, перемещая электричество с одного конца в другой, несмотря на то, что трансформаторная нагрузка и локальная система не соединены друг с другом. Если бы они были соединены, это привело бы к большому всплеску энергии и создало короткое замыкание.

Поскольку трансформатор является источником питания, он рассчитан на определенную величину мощности. Когда количество энергии, протекающей через устройство, падает ниже рекомендованной величины, это может привести к отключению электроэнергии в локальной системе. Если мощность превышает ее номинал, это может привести к перегрузке и повреждению системы.

Все трансформаторы должны иметь табличку с характеристиками или другие маркировки, показывающие номинальные напряжения для различных обмоток.

Если превысить эти напряжения, то есть риск возникновения отказа:

  • насыщенность сердечника,
  • отказ изоляции.

Мощные трансформаторы

Мощные трансформаторы

Схемы подключения измерительных ТТ

Монтаж трансформаторов тока выполняют по определённой схеме. Это зависит от напряжения измеряемой сети, а именно:

  • в 3-х фазных сетях с Uн до 1000 В ТТ встраиваются в цепь каждой фазы;
  • в 3-х фазных сетях с Uн 6-10 кВ установка осуществляется на две фазы (А и С).

В первом варианте, в электроустановках (ЭУ), где нейтраль глухозаземлена, концы вторичных обмоток ТТ замыкаются между собой по схеме «звезда».

Во втором случае, в ЭУ с изолированной нейтралью, они присоединяются по схеме «неполная звезда».


Схемы присоединения ТТ

Вместо заключения

Аппарат, работающий на стабильном токе, может преобразовывать ток большого значения в пропорциональную слабую величину, которую можно использовать для того чтобы автоматически регулировать напряжение генератора (тягового).

Статья была полезной? Оцени и поделись ей в соц. сетях:

Монтаж, подключение, опасные факторы

При пробое изоляции обмоток возникает возможность поражения током, но риск предотвращается заземлением вывода (обозначается на корпусе) вторички.

На выводы вторичной катушки И1 и И2 токи полярные, они обязательно постоянно подсоединены на нагрузку. Идущая по первичной цепи энергия со значительным потенциалом (S=UI). В другой происходит трансформация, и при обрыве в ней там падает напряжение. Потенциал разомкнутых концов при протекании энергии большой, что представляет значительную опасность.

По описанным выше причинам все вторичные цепи ТТ собирают особо тщательно и надежно, на них и кернах, выведенных из функционирования, всегда ставят шунтирующие закоротки.

Как подключается ТТ

Есть несколько схем для изделий защитного типа. Рассмотрим подключение ТТ на трехфазное напряжение.

Полная звезда:

  • самая распространенная, защита одно- и многофазных систем от КЗ;
  • три ТТ соединяются в звезду.

Если ток ниже настроек на реле КА1–КА3, то это нормальная ситуация, защита не активируется. Ток на К0 — это сумма всех 3 фаз. При возрастании величин в одной из них растет ток и в ТТ. Произойдет сработка реле при КЗ и при превышении нагрузок.

Неполная звезда:

  • защита от межфазных замыканий для создания цепей с нейтралью с заземлением;
  • для маломощных приемников с другими вариантами защиты.

Схема «треугольник и звезда» — для дифференциальной защиты.

Схема без обесточивания при КЗ на землю используется, но редко по этой же причине. Для защиты от замыканий между фазами и всплесков в одной из них.

ТТИ подсоединяются простым последовательным подключением первичных витков изделия.

ТТИ

Монтаж

Монтаж трансформаторов тока:

  1. Ревизия устройства, проверка изоляции (должно быть выше 1 кОм на 1 В);
  2. Отключают ЭУ;
  3. Убедится в обесточивании, зафиксировать заземления.
  4. Разметка, установка креплений. Запрещено размещать трансформатор вплотную к ЭУ (минимальный зазор — 10 см).
  5. Выставляются таблички, ограждения.
  6. Первичные витки подсоединяются последовательно, но с нагрузкой на вторичных. Если нет возможности подключить измеритель, то ее контакты замыкают, чтобы не было высоких мощностей на ней, которые приведут его повреждению.

установленные тт

ТТ не допускает холостого функционирования, его режим близок к КЗ: вторичные витки при подключении прибора к измеряемому току обязательно замыкаются. Иначе происходит перегревание, повреждающее изоляцию. Перед отсоединением измерителей сначала закорачивают катушки. У некоторых моделей для этого есть узлы клеммы, перемычки.

Расчет

Расчет трансформатора тока можно провести по онлайн-калькуляторам, подобрать по номиналу (например, для 10 кВ). Но это слишком упрощенные инструменты. Исчисления и параметры для выбора — чрезвычайно обширная тема, поэтому опишем основы.

Точность чрезвычайно важная, поэтому потребуются тщательные исчисления специалистами. Необходимо знать множество специфических нюансов, например:

  • при разных схемах подсоединения, видах КЗ, есть разные формулы определения сопротивления;
  • проверяют первичный ток на термо- и электродинамическую стойкость;
  • есть свои нюансы для ТТ, для релейной защиты и для учетных целей, измерений.

Правила, как выбрать трансформатор тока в общих чертах:

  • номинальное рабочее напряжение ТТ должно превышать или сравниваться с номиналом ЭУ (стандартные значения 0.66, 3, 6, 10, 15, 20, 24, 27, 35, 110, 150, 220, 330, 750 кВ). Если обслуживаемое оборудование имеет 10 кВ, то изделие должно быть рассчитано на этот показатель;
  • первичный ток ТТ — больше номинального тока у ЭУ, но учитывая перегрузочную способность;
  • оценивают ТТ по номинальной мощности вторичной нагрузки, которая должны превышать расчетное ее значение. (Sном>=Sнагр);
  • оценивают размеры и расположение для установки, номинальные нагрузки (есть таблица), наработка до отказа, срок службы, класс точности.

расшифровка маркировки

Классификация

Семейство трансформаторов тока
классифицируют по нескольким признакам.

  1. По назначению:
    • защитные;
    • линейки измерительных трансформаторов тока;
    • промежуточные (используются для выравнивания токов в системах дифференциальных защит);
    • лабораторные.
  2. По способу монтажа:
    • наружные (см. рис. 8), применяются в ОРУ;
    • внутренние (размещаются в ЗРУ);
    • встраиваемые;
    • накладные (часто совмещаются с проходными изоляторами);
    • переносные.

Пример наружного использования ТТ
Рис. 8. Пример наружного использования ТТ

  • Классификация по типу первичной обмотки:
    • многовитковые, к которым принадлежат катушечные конструкции, и трансформаторы, с обмотками в виде петель;
    • одновитковые;
    • шинные.
  • По величине номинальных напряжений:
    • До 1 кВ;
    • Свыше 1 кВ.

Трансформаторы тока можно классифицировать и по другим признакам, например, по типу изоляции или по количеству ступеней трансформации.

В чем разница между трансформаторами тока и напряжения

Если рассматривать вопрос, чем отличается трансформатор тока от трансформатора напряжения, то это алгоритм действия, назначение и компоновка, но иногда внешне приборы могут быть схожими.

Трансформаторы
Тока (ТТ) Напряжения (ТН, силовые)
Принцип действия трансформатора тока необходимо отличать: у ТТ нет узкого диапазона номинала вторички и ее ток зависит от такового (измеряемого) первичных витков, поэтому первая всегда замыкается при подсоединенной нагрузке. Монтаж трансформаторов напряжения отличается и по этому пункту.
Первичка может быть с одним витком через окно магнитопровода. На другой катушке строго определенный номинал.

Основное отличие: функционирует как источник тока со значением защищаемого участка. Данная величина почти независима от нагрузок на вторичке.

Как работает трансформатор напряжения: при переходе между катушками (всегда много витков) меняются характеристики именно питания под параметры потребителя. То есть изоляция и защита тут на втором месте, имеют другую природу. Нагрузка может варьироваться в пределах возможностей изделия.
Цель — изолирование измерителей от высоких мощностей, для контроля, измерений электросетей. Трансформаторы напряжения назначение режим работы и принцип действия имеют иные, чем ТТ. Цель — преобразование мощности для питания нагрузок разного номинала. Напряжение, продуцируемое электростанциями чрезвычайно высокое. Для подвода энергии применяют понижающие модели, а при передаче на большие расстояния (когда возможны потери) — повышающие.
На ЭУ, станциях, где подведена чрезвычайно мощная сеть до такой степени, что требуется дополнительная изоляция даже для замеров. Для чего нужен трансформатор напряжения: эксплуатация бытовых и подобных электроустройств. Для «подгонки» под приемники энергии, благодаря чему возможно везде пользоваться универсальной сетью. Напряжение изменяется под потребности потребителя, становится подходящим для любой техники.
Встроен почти в каждый бытовой прибор, есть в общедомовых сетях.

Импульсные трансформаторы

Наличие в ЭУ слабо и среднемощных ТТ обезопасит работы — элемент разделяет цепи высоких/низких мощностей, упрощает измерители, реле.

Устройства, например, способны осуществлять понижение с тысяч ампер до 5 А, 1 А.

1. Принцип работы трансформатора

Принцип работы трансформатора основан на явлении электромагнитной индукции.

Если на первичную обмотку подать переменное напряжение U1, то по виткам обмотки потечет переменный ток Io, который вокруг обмотки и в магнитопроводе создаст переменное магнитное поле. Магнитное поле образует магнитный поток Фo, который проходя по магнитопроводу пересекает витки первичной и вторичной обмоток и индуцирует (наводит) в них переменные ЭДС – е1 и е2. И если к выводам вторичной обмотки подключить вольтметр, то он покажет наличие выходного напряжения U2, которое будет приблизительно равно наведенной ЭДС е2.

Работа трансформатора без нагрузки

При подключении к вторичной обмотке нагрузки, например, лампы накаливания, в первичной обмотке возникает ток I1, образующий в магнитопроводе переменный магнитный поток Ф1 изменяющийся с той же частотой, что и ток I1. Под воздействием переменного магнитного потока в цепи вторичной обмотки возникает ток I2, создающий в свою очередь противодействующий согласно закону Ленца магнитный поток Ф2, стремящийся размагнитить порождающий его магнитный поток.

Работа трансформатора под нагрузкой

В результате размагничивающего действия потока Ф2 в магнитопроводе устанавливается магнитный поток Фo равный разности потоков Ф1 и Ф2 и являющийся частью потока Ф1, т.е.

Результирующий магнитный поток Фo обеспечивает передачу магнитной энергии из первичной обмотки во вторичную и наводит во вторичной обмотке электродвижущую силу е2, под воздействием которой во вторичной цепи течет ток I2. Именно благодаря наличию магнитного потока Фo и существует ток I2, который будет тем больше, чем больше Фo. Но и в то же время чем больше ток I2, тем больше противодействующий поток Ф2 и, следовательно, меньше Фo.

Из сказанного следует, что при определенных значениях магнитного потока Ф1 и сопротивлений вторичной обмотки и нагрузки устанавливаются соответствующие значения ЭДС е2, тока I2 и потока Ф2, обеспечивающие равновесие магнитных потоков в магнитопроводе, выражаемое формулой приведенной выше.

Таким образом, разность потоков Ф1 и Ф2 не может быть равна нулю, так как в этом случае отсутствовал бы основной поток Фo, а без него не мог бы существовать поток Ф2 и ток I2. Следовательно, магнитный поток Ф1, создаваемый первичным током I1, всегда больше магнитного потока Ф2, создаваемого вторичным током I2.

Величина магнитного потока зависит от создающего его тока и от числа витков обмотки, по которой он проходит.

Напряжение вторичной обмотки зависит от соотношения чисел витков в обмотках. При одинаковом числе витков напряжение на вторичной обмотке будет приблизительно равно напряжению, подаваемому на первичную обмотку, и такой трансформатор называют разделительным.

Схематичное изображение разделительного трансформатора

Если вторичная обмотка содержит больше витков, чем первичная, то развиваемое в ней напряжение будет больше напряжения, подаваемого на первичную обмотку, и такой трансформатор называют повышающим.

Схематичное изображение повышающего трансформатора

Если же вторичная обмотка содержит меньшее число витков, чем первичная, то и напряжение ее будет меньше, чем напряжение подаваемое на первичную обмотку, и такой трансформатор называют понижающим.

Схематичное изображение понижающего трансформатора

Следовательно. Путем подбора числа витков обмоток, при заданном входном напряжении U1 получают желаемое выходное напряжение U2. Для этого пользуются специальными методиками по расчету параметров трансформаторов, с помощью которых производится расчет обмоток, выбирается сечение проводов, определяются числа витков, а также толщина и тип магнитопровода.

Трансформатор может работать только в цепях переменного тока. Если его первичную обмотку подключить к источнику постоянного тока, то в магнитопроводе образуется магнитный поток постоянный во времени, по величине и направлению. В этом случае в первичной и вторичной обмотках не будет индуцироваться переменное напряжение, а следовательно, не будет передаваться электрическая энергия из первичной цепи во вторичную. Однако если в первичной обмотке трансформатора будет течь пульсирующий ток, то во вторичной обмотке будет индуцироваться переменное напряжение частота которого будет равна частоте пульсации тока в первичной обмотке.

Классификация по способу исполнения

Отдельно стоит рассматривать способ исполнения ТТ, так как в этом случае также существует несколько вариантов. Выделяют следующие виды:

  • Тороидальные. Устанавливаются на кабели или шины, поэтому первичная обмотка им вообще не нужна. Первичный ток в этом случае протекает по шине, проходит через сердечник и фиксируется вторичной обмоткой.
  • Сухие. У таких изделий первичная обмотка не имеет изоляции, поэтому свойства получаемого тока зависят от используемого коэффициента преобразования.
  • Высоковольтные (масляные и газовые). Используются для дополнительной защиты от короткого замыкания, а для измерительных работ – не годятся.

Трансформаторы тока разных производителей

Рассмотрим несколько трансформаторов тока разных производителей:

Трансформаторы тока ТОЛ-НТЗ-10-01

Производитель ООО «Невский трансформаторный завод «Волхов», предназначены для передачи сигнала измерительной информации измерительным приборам и устройствам защиты и управления, для изолирования цепей вторичных соединений от высокого напряжения в комплектных устройствах внутренней и наружной установки (КРУ, КРУН, КСО) переменного тока на класс напряжения до 10 кВ и являются комплектующими изделиями.

Трансформаторы изготавливаются в виде опорной конструкции, в климатических исполнениях «УХЛ» и «Т», категории размещения «2» по ГОСТ 15150-69.

Рабочее положение трансформатора в пространстве – любое.

Трансформаторы работают в электроустановках, подвергающихся воздействию грозовых перенапряжений и имеют:

  • класс нагревостойкости «В» по ГОСТ 8865-93;
  • уровень изоляции «а» и «б» по ГОСТ 1516.3-96.

Варианты исполнения трансформатора: «Б» — оснащён изолирующими барьерами.

Расположение вторичных выводов:

  • «А» — параллельно установочной поверхности;
  • «В» — перпендикулярно установочной поверхности;
  • «С» — из гибкого провода, параллельно установочной поверхности;
  • «D» — из гибкого провода, перпендикулярно установочной поверхности.

ТОЛ-НТЗ-10-01 1

Технические параметры

Трансформаторы тока характеризуются следующими индивидуальными параметрами:

  1. Номинальным током – позволяющим аппарату функционировать длительное время, не перегреваясь;
  2. Номинальным напряжением – значение должно обеспечивать нормальную работу трансформатора. Именно этот показатель влияет на качество изоляции между обмотками, одна из которых находится под высоким напряжением, а другая заземлена.
  3. Коэффициентом трансформации;
    Формула по вычислению коэффициента трансформации
    Формула по вычислению коэффициента трансформации

    где:

    • U1 и U2 – напряжение в первичной и вторичной обмотки,
    • N1 и N2 – количество витков в первичной и вторичной обмотке,
    • I1 и I2 – ток в первичной и вторичной обмотки(обычно ток во вторичной обмотке равен 1А или 5А).
  4. Погрешностью значения электротока – вызывается намагничиванием;
  5. Номинальной нагрузкой, определяющей нормальную работу прибора;
  6. Номинальной предельной кратностью – максимально допустимое значение отношения первичного значения электротока к номинальному;
  7. Предельной кратностью вторичного тока – соотношение наибольшего тока вторичной обмотки к его номинальной величине.

Значения
Значения которыми могут обладать ТТ

При выборе устройства необходимо учитывать значение указанных и других характеристик.

Для чего нужны трансформаторы тока

Трансформатор тока нулевой последовательности широко используется в организации работы производства, в быту (с его помощью проводят сварочные работы, он нормализуют входящее в дом напряжение, бросок тока, он нормализует работу электросчётчика с целью увеличения безопасности).

Трансформатор является важным инструментом в области электротехники. Текущие уровни электрического тока должны контролироваться в целях безопасности и эффективности работы прочих бытовых и промышленных приборов. Измерительные устройства, подключенные к трансформаторам, позволяют совершать мониторинг в различных местах по всей системе. Они также могут быть использованы для измерения электрического использования здания и выставления счетов или целей проверки.

Трансформатор тока - схема
Трансформатор тока – схема

Идеальный трансформатор тока: уравнение

Идеальный трансформатор тока представляет из себя электромагнитное устройство, которое способно не допускать потерю энергию во время увеличения напряжения и во время рассеивания обмотков.

Итак, уравнение для такого трансформатора будет выглядеть следующим образом:

Формула
Формула

Где:

  • U2/U1 – отношение напряжения на конце вторичной обмотки к напряжению первичной;
  • N2/N1 – отношение числа витков вторичной обмотки к числам витков первичной;
  • I1/I2 – отношение тока первичной цепи ко вторичной;
  • n – трансформационный коэффициент.

Области использования

Трансформатор в основном используется для трех работ:

  1. Изменения параметров (напряжение и ток) при неизменной частоте и мощности;
  2. Для фильтрации постоянного тока, поскольку постоянный ток не может проходить через трансформатор из-за использования катушки, индуктивное сопротивление равно:

XL = 2 * pi * f * l, здесь f = 0 для постоянного тока.

  1. Согласование импеданса – в некоторых случаях, когда требуется определенный импеданс для максимальной передачи мощности.

Дополнительная информация. Импеданс – это сопротивление потоку переменного тока через проводящий материал.

Применение трансформатора при передаче электроэнергии на большие расстояния помогает контролировать возникающие большие напряжения. Некоторые разновидности устройств используется для измерения, контроля, изоляции и защиты.

Измерительные трансформаторы тока

Измерительные трансформаторы тока

Обратите внимание! Правильно сконструированные разделительные трансформаторы имеют такие изолированные обмотки, чтобы свести к минимуму вероятность того, что сигналы смогут переходить от одной обмотки к другой. Между обмотками прокладывают диэлектрик, чтобы обеспечить максимальную изоляцию.

Трансформатор – это электрическое устройство, используемое для повышения или понижения напряжения переменного тока. При этом используется простое явление взаимной индукции для преобразования энергии от одной обмотки к другой. Количество обмоток с каждой стороны определяет коэффициент увеличения или понижения. Во всем этом преобразовании мощность с каждой стороны и частота остаются такими же.

Знать, какие бывают трансформаторы и зачем они нужны необходимо всем, тогда будут понятны многие другие вещи, связанные с электротехникой и электричеством. Можно даже самому сделать преобразующий трансформатор по технологии намотки и сборки, важно лишь не отступать от неё.

Видео

Расчет трансформатора

Расчет силовых трансформаторов холостого хода, у которых начальное напряжение 1 и вторичное 160, с внутренним сопротивлением 0.2Ω производится по такой формуле. В нашем примере первичный ток 800 Ампер, такая методика может подстроиться под любой ток:

Is= Ip (Np/Ns) = 800 (1/160) = 5 A

Мы видим выше, что с вторичной обмотки трансформатор был подключен через амперметр, который имеет очень малое сопротивление, падение напряжения на вторичной обмотке составляет всего 1,0 вольта при полной величине первичного тока на обмотках. Если амперметр удаляют, вторичная обмотка становится открытой и трансформатор действует как повышающий, в результате очень высокого напряжения равном соотношении:   Vp (Ns / NP), ток регулируется на вторичной обмотке. Формула может изменяться, если у Вас несколько обмоток или более слабый прибор, кроме того, здесь не учтен ток холостого хода трансформатора. Нужно помнить, что подключение счетчика через трансформаторы тока формула может иметь немного другой вид, т.к. будет учитываться еще и пропускная способность учетного прибора.

Чтобы подобрать нужную мощность трансформатора, нужно просчитать потребное напряжение всех электрических устройств в доме, а после суммировать полученную сумму и вольтамперные характеристики трансформатора (ВАХ). Если эти значения не учтены, то возможна перегрузка и защита не будет достигать нужного уровня при высокой нагрузке сети.

Перед тем, как подключить готовый трансформатор, нужно проконсультироваться со специалистом, он поможет определить недочеты, которые Вы могли упустить из виду.

Важность коэффициента трансформации, класса точности, погрешности

Коэффициент трансформации (КТ) — определяет пропорциональность преобразования, задается при проектировании ТТ, при выпуске обязательно проверяется. На схеме это К1, определяемый соотношением l1/l2 (двумя векторами).

Коэффициент трансформации

Эффективность коэффициентов собранных изделий отображает класс точности. При реальном функционировании токовые величины не постоянные, поэтому коэффициент обозначают номинальным. Пример: 1000/5 — при 1 кА рабочего тока (первичного) во вторичной цепи действует нагрузка 5 А. Именно по описанным значениям и проводится расчет продолжительность эксплуатации этого трансформаторного тока.

Погрешность ТТ влияет на класс его точности и определяется сечением, уровнем проницаемости материала магнитопровода, величинами магнитного пути.

Коэффициент трансформации

Возрастание сопротивления нагрузки во вторичной цепи, превышающее возможности ТТ (при этом там генерируется повышенное напряжение), провоцирует пробой изоляции — трансформатор выходит из строя, перегорает. Поэтому важно правильно подбирать данный параметр. Предельное сопротивление есть в справочных материалах.

класс точности

Возможные неисправности трансформаторов тока

У трансформатора тока, включенного под нагрузку, иногда возникают неисправности и даже аварийные ситуации. Как правило, это связано с нарушениями электрического сопротивления изоляции обмоток, снижением их проводимости под влиянием повышенных температур. Негативное влияние оказывают случайные механические воздействия или некачественно выполненный монтаж.

В процессе работы оборудования наиболее часто происходит повреждение изоляции, вызывающее межвитковые замыкания обмоток, что существенно снижает передаваемую мощность. Токи утечки могут появиться в результате случайно созданных цепей, вплоть до возникновения короткого замыкания.

С целью предупреждения аварийных ситуаций, специалистами с помощью тепловизоров периодически проверяется вся действующая схема. Это позволяет своевременно устранить дефекты нарушения контактов, снижается перегрев оборудования. Наиболее сложные испытания и проверки проводятся в специальных лабораториях.

Back To Top