Ремонт компьютерного блока питания своими руками. Возможные причины неисправности и ремонт компьютерного блока питания

Блок питания компьютера: принцип работы, типовые неисправности, пошаговый ремонт

Блок питания компьютера: принцип работы, типовые неисправности, пошаговый ремонт

Основные компоненты и особенности работы

В последнее время все производители перешли на форм-фактор ATX. Такой переход был связан с изменением технических решений в производстве материнских плат, в частности, изменения системы её запуска. Используемая схемотехника требовала напряжения +3,3 вольта.

Стандарт ATX претерпел за всё время несколько ревизий, в первую очередь это было связано с выделением отдельных линий питания для процессоров и видеокарт. Самая первая модель имела стандартный 20-pin разъём, к которому в дальнейшем были добавлены четыре пина, подающие питание 12 вольт.

Из всех модификаций популярность получил формат EPS/EPS 12 В, состоящий из основного 24-pin штекера и дополнительного 8- pin для подачи 12 вольт.

Все необходимые для работы напряжения подаются через основной разъём, имеющий ключ, защищающий от неправильной установки. Для обеспечения автоматизации запуска применяются различные сигналы, позволяющие провести первичное тестирование БП перед запуском. Так, для включения БП используется сигнал PS-ON. А линия PW-OK, разрешает запуск устройства только после появления всех требуемых напряжений, выдаваемых устройством питания.

Перед тем как приступить к ремонту компьютера своими руками, следует понимать как он устроен и принцип его работы. К основным его блокам относят:

  • сетевой фильтр;
  • первичную цепь питания;
  • узел контроля сигнала PS-ON;
  • блок формирования сигнала PW-OK;
  • стабилизатор напряжения линии + 5 вольт;
  • блок формирования положительных напряжений: 3,3 В, +5 В, +12 В;
  • блок формирования отрицательных напряжений: 5 В, 12 В;
  • формирователь положительного стабильного сигнала 3,3 вольта;
  • фильтры на линиях сформированных напряжений;
  • блок защиты.

Принцип работы источника напряжения основан на широтно-импульсной модуляции (ШИМ). Напряжение из промышленной сети поступает на сетевой фильтр, а через него на выпрямительный блок и силовые ключи. Величина напряжения на его выходе составляет 310 вольт. Далее сигнал поступает на вторичные узлы прибора питания и дежурку.

Если напряжение присутствует на ключевых транзисторах, то происходит их открывание, и в первичной обмотке трансформатора возникает ток. Под действием электродвижущей силы ток появляется и во вторичной обмотке. Шим-контроллер, изменяя параметры импульса, управляет временем открытия транзисторов. Работа транзисторов происходит попарно: если один открыт, то другой закрыт.

Стабилизация выходного сигнала происходит путём применения обратной связи. При поднятии уровня сигнала на вторичной обмотке схема обратной связи корректирует значение напряжения на управляющей ноге микросхемы. При этом контроллер увеличивает длительность сигнала, поступающего на транзисторные ключи.

С импульсного трансформатора напряжение поступает на остальные узлы схемы, где и формируются требуемые величины напряжений. На каждой такой линии стоит фильтр, он предназначен для убирания из сигнала паразитных пульсаций. Обычно фильтр представляет собой электролитический конденсатор.

Во время своей работы ключевые элементы работают в тяжёлых режимах, поэтому они нуждаются в охлаждении. Для этого используется активно-пассивный метод. Сами элементы устанавливаются на радиаторы, а их поверхность обдувается вентилятором работающими от 12 вольт.

При соединении разъёмов БП с материнской платой на неё поступает напряжение равное +5 вольт. Основные напряжения на блоке питания в этот момент отсутствуют, кроме сформированного материнской платой дежурного сигнала +3,3 вольта. При нажатии кнопки включения ПК, замыкающей контакты PW-ON на материнской плате, величина PS-ON становится равной нулю, и даётся разрешение на формирование рабочих напряжений. После этого на материнскую плату поступает напряжение PW-OK, обозначающее, что питание в норме. Провода, выходящие из устройства, отвечают за подачу напряжения, величина которого соответствует их цвету:

  • Пошаговый ремонт блока питания компьютера своими руками
    Пошаговый ремонт блока питания компьютера своими руками
    жёлтый, +12 вольт;
  • красный, +5 вольт;
  • белый, -5 вольт;
  • синий, -12 вольт;
  • оранжевый, + 3,3 вольта;
  • зелёный, для передачи сигнала PS ON;
  • серый, для передачи сигнала PW OK;
  • фиолетовый, дежурное питание;
  • чёрный, общий.

Когда при работе блока питания какой-то компонент неисправен (или на входе, или выходе), произошёл всплеск уровня напряжения, срабатывает схема защиты. Она останавливает работу путём снятия сигнала Power Good. Повторный запуск компьютерного БП возможен только после отключения его и обратного включения в электрическую сеть.

П О П У Л Я Р Н О Е:

  • Регулируемый источник питания на LM117-LM317
  • Регулируемый источник питания на LM117-LM317
    Стабилизаторы положительного напряжения, предназначены для получения стабилизированных напряжений от 1,2 В до 37 В при токе нагрузки до 1,5 А. Имеют три вывода и для задания нужного выходного напряжения требуют всего лишь резисторный делитель.  Подробнее…

  • Ремонт ноутбука своими руками
  • Ремонт ноутбука своими руками
    Раньше иметь дома, кроме обычного стационарного ПК, еще и ноутбук считалось чуть ли не роскошью. Сегодня это обычное дело, но в последнее время можно наблюдать некоторый спад интереса к ноутбукам в пользу планшетов и смартфонов…

    Однако «списывать» портативные компьютеры вопреки всяким прогнозам еще точно рано, а вот ремонтировать их, как не жаль, но иногда приходится…

    Подробнее…

  • Питание для ЖК дисплея.

Практические рекомендации по ремонту



Если принято решение самостоятельно починить источник питания, в первую очередь он извлекается из корпуса системного блока. После выкручиваются крепёжные винты и снимается защитный кожух. Продув и почистив от пыли, приступают к его изучению. Практический ремонт блока питания компьютера своими руками пошагово можно представить следующим образом:

  1. Внешний осмотр. При нём особое внимание уделяется почерневшим местам на плате и элементах, внешнему виду конденсаторов. Верхушка конденсаторов должна быть плоской, выпуклость говорит о его негодности, внизу у основания не должно быть подтёков. Если имеется кнопка включения, не лишним будет провести её проверку.
  2. Если осмотр не вызвал подозрений, то следующим шагом будет прозвонка входных и выходных цепей на присутствие короткого замыкания (КЗ). При присутствии короткого замыкания выявляется пробитый полупроводниковый элемент, стоящий в цепи с КЗ.
  3. Измеряется сетевое напряжение на конденсаторе выпрямительного блока и проверяется предохранитель. В случае наличия напряжения 300 B переходим к следующему этапу.
  4. Если напряжение отсутствует, при этом сгорает предохранитель, проверяется диодный мост, ключевые транзисторы на короткое замыкание. Резисторы и защитный терморезистор на обрыв.
  5. Проверяется присутствие дежурного напряжения, стабилизированных пяти вольт. Статистика свидетельствует, что когда устройство питания не включается, одна из наиболее распространённых причин, это неисправность схемы дежурного питания, при работоспособных силовых элементах.
  6. Если стабилизированные пять вольт присутствуют, проверяется наличие PS_ON. Когда значение менее четырёх вольт, ищется причина занижения уровня сигнала. Обычно PS_ON формируется от дежурного напряжения через подтягивающий резистор номиналом 1 кОм. Проверяется цепь супервизора, прежде всего на соответствие в цепи значений ёмкости конденсаторов и номиналы резисторов.

В случае, если причина не найдена, проверяется ШИМ контроллер. Для этого понадобится стабилизированный прибор питания на 12 вольт. На плате отключается нога микросхемы, отвечающая за задержку (DTC), а питание источника подаётся на ногу VCC. Осциллографом смотрится наличие генерации сигнала на выводах, подключённых к коллекторам транзисторов, и присутствие опорного напряжения. Если импульсы отсутствуют проверяется промежуточный каскад, собранный чаще всего на маломощных биполярных транзисторах.

Как проверить исправность БП

После ремонта блока питания его необходимо проверить.

Начать проверку рекомендуется с измерения сопротивлений на выходе источника питания. Для проведения тестирования необходимо:

  • отключить блок питания от сети;
  • отключить все разъемы от материнской платы компьютера;
  • на мультиметре установить предел измерения 200 Ом.

В процессе тестирования один щуп прибора соединен с общим контактом блока питания (любой черный провод). Другим щупом поочередно измеряем сопротивление на разъемах блока питания. При этом сопротивление должно быть больше значений, указанных в таблице.

Контакт Минимально допустимое сопротивление, Ом Вероятное значение сопротивления, Ом
+3,3 В (оранжевый) 6,5 7, 15, 32, ∞
+5 В (красный) 20 50, 96, 200, ∞
+12 В (желтый) 130 136, 264, ∞
-12 В (синий) 98 98, 195, ∞
+5 В SB (синий) 46 46, 98, ∞

Эти данные были получены в результате тестирования 20 БП различных производителей и разной мощности.

На многих блоках питания для возможности проверять их без нагрузки на выходе устанавливают резисторы. Величина сопротивления и мощности зависит от производителя и может колебаться в большом диапазоне.

Разъем АТХ блока
Разъем АТХ блока

Если нагрузочный резистор не установлен, то при подключении мультиметра сопротивление сначала будет небольшое, а потом будет увеличиваться до бесконечности. Это происходит потому, что на выходе БП стоит фильтрующий конденсатор, который заряжается от омметра.

Если сопротивление на выводах в норме, можно запускать блок питания и измерять напряжения на его выводах. Чтобы включить, нужно подключить его к электрической сети и при помощи перемычки соединить между собой зеленый провод и любой черный. В результате БП должен заработать, а вентилятор – начать вращаться. Допустимые значения напряжения на выводах представлены в таблице.

Контакт Минимально допустимое напряжение, В Максимально допустимое напряжение, В
+3,3 В (оранжевый) +3,14 +3,46
+5 В (красный) +4,75 +5,25
+12 В (желтый) +11,4 +12,6
-12 В (синий) -10,8 -13,2
+5 В SB (синий) +4,75 +5,25
+5 В PG (серый) +3 +6

Как отремонтировать блок питания компьютера своими руками
Как отремонтировать блок питания компьютера своими руками

Чтобы окончательно убедиться в исправности блока питания, нужно провести тестирование всех шин питания под нагрузкой. Можно спаять тестер самостоятельно, а можно приобрести уже готовый. С более подробной информацией о тестировании БП, а также со схемой тестера можно ознакомиться здесь.

Как отремонтировать блок питания компьютера своими руками
Как отремонтировать блок питания компьютера своими руками

Нагрузка на БП

Необходимо предупредить, что включение импульсных БП без нагрузки существенно сокращает их срок службы и даже может стать причиной поломки. Поэтому мы рекомендуем собрать простой блок нагрузок, его схема показана на рисунке.

Схема блока нагрузки
Схема блока нагрузки

Схему желательно собирать на резисторах марки ПЭВ-10, их номиналы: R1 – 10 Ом, R2 и R3 – 3,3 Ом, R4 и R5 – 1,2 Ом. Охлаждение для сопротивлений можно выполнить из алюминиевого швеллера.

Подключать в качестве нагрузки при диагностике материнскую плату или, как советуют некоторые «умельцы», HDD и СD привод нежелательно, поскольку неисправный БП может вывести их из строя.

Ищем виновника

Как мы видим в схеме, дежурное питание, далее по тексту – дежурка, обозначается как +5VSB:

Ремонт компьютерного блока питания
Ремонт компьютерного блока питания

Прямо от нее идет стабилитрон номиналом в 6,3 Вольта на землю. А как вы помните, стабилитрон – это тот же самый диод, но подключается в схемах наоборот. У стабилитрона используется обратная ветвь ВАХ. Если бы стабилитрон был живой, то у нас провод +5VSB не коротил бы на массу. Скорее всего стабилитрон сгорел и PN переход разрушен.

Что происходит при сгорании разных радиодеталей с физической точки зрения? Во-первых, изменяется их сопротивление. У резисторов оно становится бесконечным, или иначе говоря, уходит в обрыв. У конденсаторов оно иногда становится очень маленьким, или иначе говоря, уходит в короткое замыкание. С полупроводниками возможны оба этих варианта, как короткое замыкание, так и обрыв.

[quads id=1]

В нашем случае мы можем проверить это только одним способом, выпаяв одну или сразу обе ножки стабилитрона, как наиболее вероятного виновника короткого замыкания. Далее будем  проверять пропало ли короткое замыкание между дежуркой и массой или нет. Почему так происходит?

Вспоминаем простые подсказки:

1)При последовательном соединении работает правило больше большего, иначе говоря, общее сопротивление цепи больше, чем сопротивление большего из резисторов.

2)При параллельном же соединении работает обратное правило, меньше меньшего, иначе говоря итоговое сопротивление будет меньше чем сопротивление резистора меньшего из номиналов.

Можете взять произвольные значения сопротивлений резисторов, самостоятельно посчитать и убедиться в этом. Попробуем логически поразмыслить, если у нас одно из сопротивлений параллельно подключенных радиодеталей будет равно нулю, какие показания мы увидим на экране мультиметра ? Правильно, тоже равное нулю…

И до тех пор пока мы не устраним это короткое замыкание путем выпаивания одной из ножек детали, которую мы считаем проблемной, мы не сможем определить, в какой детали у нас короткое замыкание. Дело все в том,  что при звуковой прозвонке, ВСЕ детали параллельно соединенные с деталью находящейся в коротком замыкании, будут у нас звониться накоротко с общим проводом!

Пробуем выпаять стабилитрон. Как только я к нему прикоснулся, он развалился надвое. Без комментариев…

Ремонт компьютерного блока питания
Ремонт компьютерного блока питания

Принципы измерения радиоэлементов

Корпус БП соединён с общим проводом печатной платы. Измерение силовой части источника питания проводится относительно общего провода. Предел на мультиметре выставляется более 300 вольт. Во вторичной части присутствует только постоянное напряжение, не превышающее 25 вольт.

Проверка резисторов осуществляется путём сравнений показаний тестера и маркировки, нанесённой на корпус сопротивления или указанной на схеме. Проверка диодов проводится тестером, если он показывает нулевое сопротивление в оба направления, то делается вывод о его неисправности. Если существует возможность в приборе проверить падение напряжения на диоде, то можно его не выпаивать, величина составляет 0,5−0,7 вольта.

Проверка конденсаторов происходит путём измерения их ёмкости и внутреннего сопротивления, для чего необходим специализированный прибор ESR-метр. При замене следует учитывать, что используются конденсаторы с низким внутренним сопротивлением (ESR). Транзисторы прозванивают на работоспособность p-n переходов или в случае полевых на способность открываться и закрываться.

Безопасность в ремонте – превыше всего

Собираясь своими руками заняться ремонтом любого блока питания необходимо помнить о собственной безопасности. Особенно это касается импульсных преобразователей. Немного проще дела обстоят в ситуации, когда поломки не затронули горячую часть неработающего устройства.
Дело в том, что силовые конденсаторы преобразователя способны сохранять заряд в течение длительного периода времени.

Внешний вид конденсатора

Силовой конденсатор

Поэтому занимаясь самостоятельным ремонтом данной аппаратуры, нужно делать все аккуратно и неукоснительно соблюдая правил техники безопасности.
После отключения от сети блока к его конденсаторам не рекомендуется прикасаться в течение 15 минут. Также не нужно трогать системную плату и радиодетали БП, который подключен к сети.

Обратите внимание! Когда ремонт сгоревшего блока питания своими руками завершен, его работоспособность необходимо проверять вдали от горючих и легко воспламеняющихся материалов.

Эти знания помогут вам избежать ненужных травм и ударов токов при самостоятельном ремонте изделия.

Автомобильное зарядное устройство из компьютерного БП АТХ

ШИМ-контроллер – что за зверь такой?
Следующая запись »

Диагностика типовых неисправностей и способы их устранения

Существует несколько типовых неисправностей блока питания:

  • сгорел предохранитель в блоке питания;
  • отсутствует дежурное напряжение, оно также может быть больше или меньше нормального;
  • одно из напряжений на выходе БП отсутствует или выходит за допустимые пределы;
  • нет сигнала на проводе +5 В PG;
  • блок питания не включается;
  • не вращается вентилятор.

Первое, что нужно сделать после того, как блок питания разобран, – произвести внешний осмотр. При этом следует обратить внимание на конденсаторы. По статистике примерно 50% поломок БП связаны со вздувшимися конденсаторами.

Также следует проверить, легко ли вращается кулер. Со временем смазка вырабатывается и теряет свои свойства, в результате частота вращения вентилятора уменьшается. Из-за этого охлаждение блока питания ухудшается, и некоторые детали могут перегреться и выйти из строя.

После этого следует осмотреть предохранитель, резистор, транзисторы и другие полупроводниковые элементы.

Перегорел предохранитель

Чаще всего в БП устанавливается плавкий предохранитель в стеклянном корпусе. Обычно он расположен в горизонтальном положении и находится рядом с сетевым фильтром. Иногда предохранитель устанавливается вертикально, и на него надета термоусадка. На плате он обозначается как F1.

Предохранители
Предохранители

Чтобы проверить предохранитель, его нужно прозвонить при помощи мультиметра. В таком случае его нужно заменить. Если под рукой не оказалось предохранителя с выводами, то можно их подпаять к обычному. Для этого припаиваем два провода к чашечкам с обоих торцов последнего.

Мнение экспертаАлексей БартошСпециалист по ремонту, обслуживанию электрооборудования и промышленной электроники. Задать вопрос Предохранители не перегорают без причины. После его замены нужно проверить диодный мост, ключевой транзистор и всю высоковольтную часть блока питания.

Вздулись электролитические конденсаторы

Чтобы предотвратить взрыв конденсаторов, на них сверху наносят насечки. Когда давление внутри возрастает, в том месте, где есть насечки, происходит вздутие. Оно свидетельствует о том, что данная деталь вышла из строя.

конденсаторы
конденсаторы

Чаще всего выходят из строя конденсаторы, которые установлены в цепи +5 В, так как у них маленький запас по напряжению – 6,3 В. Поэтому при их замене рекомендуется ставить конденсаторы, рассчитанные на напряжение не меньше 10 В. Если такой конденсатор не вписывается по габаритам, то лучше поставить рассчитанный на немного меньшую емкость, но с большим напряжением.

При установке электролитических конденсаторов важно соблюдать полярность.

Иногда конденсаторы выходят из строя без каких-либо внешних признаков, например, они могут высохнуть. В таком случае их нужно выпаять и проверить их емкость и внутреннее сопротивление.

Проверяем выпрямитель

В качестве выпрямителя в блоке питания может использоваться сборка из 4 диодов или диодный мост.

выпрямитель.
выпрямитель.

Проверку можно выполнить, не выпаивая деталей с платы. В прямом направлении сопротивление должно быть небольшим, а в обратном – резко увеличиваться.

Схема прозвонки диодного моста представлена на рисунке ниже. Сначала устанавливаем минусовой щуп мультиметра на вывод, отмеченный значком «+», и при помощи положительного щупа проверяем сопротивление. В направлениях, отмеченных стрелками, оно должно быть небольшим, а в обратных должно показывать бесконечность (обрыв). То же проделываем для остальных ножек.

диодный мост
диодный мост

Если один из диодов или диодный мост пробиты, то нужно проверить также конденсаторы, установленные во входном фильтре, и ключевые транзисторы. Так как переменное напряжение, появившееся после пробоя, могло вывести из строя эти детали.

Варистор

Варисторы предназначен для защиты блока питания от импульсных перенапряжений. При увеличении напряжения его сопротивление резко уменьшается, и таким образом он поглощает лишнюю энергию. При этом возрастает ток, из-за чего может перегореть предохранитель.

Как отремонтировать блок питания компьютера своими руками
Как отремонтировать блок питания компьютера своими руками

Если скачок напряжения будет слишком большой или продолжительный, то варистор может перегореть. В таком случае он чернеет и раскалывается. После его замены рекомендуется проверить другие детали, входящие во вторичную цепь.

Прочие проблемы

Еще причинами неисправности БП может быть неисправность мощных транзисторов в ключах инвертора. Если импульсы на базы (затворы) триодов приходят, а в цепи коллекторов (стоков) их нет, транзисторы надо выпаять и прозвонить. Биполярные триоды прозваниваются, как два диода с общим выводом.



Проверка биполярных триодов.

Для тестирования MOSFET лучше собрать несложную схему.



Схема проверки полевых транзисторов.

Также надо проверить наличие сигнала Power_good на 8 контакте разъема материнской платы. Может получиться так, что все напряжения в порядке, но неисправна схема формирования данного сигнала. Компьютер это воспримет, как неисправность БП.

Дело не в стабилитроне

Проверяем, устранилось ли у нас короткое замыкание по цепям дежурки и массы, либо нет. Действительно, короткое замыкание пропало. Я сходил в радиомагазин за новым стабилитроном и запаял его. Включаю блок питания, и… вижу как мой новый, только что купленный стабилитрон испускает волшебный дым)…

И тут я сразу вспомнил одно из главных правил ремонтника:

Если что-то сгорело, найди сначала причину этого, а только затем меняй деталь на новую или рискуешь получить еще одну сгоревшую деталь.

Ругаясь про себя матом, перекусываю сгоревший стабилитрон бокорезами  и снова включаю блок питания.

Так и есть, дежурка завышена: 8,5 Вольт. В голове крутится главный вопрос: “Жив ли еще ШИМ контроллер, или я его уже благополучно спалил?”. Скачиваю даташит на микросхему и вижу предельное напряжение питания для ШИМ контроллера, равное 16 Вольтам. Уфф, вроде должно пронести…

Ремонт компьютерного блока питания
Ремонт компьютерного блока питания

Этапы выявления неисправностей

Перед тем как перейти к ремонту импульсного блока питания своими руками, потребуется удостовериться, что проблема заключается именно в нём. Обычно первое подозрение возникает на него, когда системный блок отказывается запускаться. Проще всего проверить исправность БП путём его замены на заведомо исправный блок. Диагностику блоку питания компьютера удобно проводить поэтапно. Эти этапы в себя включают:

  1. Первичную диагностику. Она основана на нахождении признаков неисправностей. Сюда входят визуальный осмотр на наличие подозрительных мест, а также выявление запаха горевших деталей и элементов. Если происходит первичный запуск, стоит прислушаться к посторонним звукам.
  2. Выявление неисправных узлов. Для этого потребуется предположить неисправность в узле и выделить сгоревший элемент. Этот этап самый сложный, для его облегчения необходимо не только понимать процессы, проходящие в БП, но и иметь электрическую схему, которая просто необходима при поиске «плавающих» неисправностей.
  3. Используя измерительные приборы, проследить путь прохождение сигнала до неисправного элемента. Понять причину, почему возникла эта поломка.
  4. Компьютерный блок питания
    Компьютерный блок питания
    После замены сгоревшего элемента проверить другие радиодетали, непосредственно влияющие на его работу.
  5. По завершении ремонта осуществить безопасный тестовый старт. Для этого используется лампа накаливания, включённая в разрыв провода питания. Хорошим признаком будет её кратковременная вспышка, показывающая, что короткое замыкание отсутствует.
  6. При нормальном запуске понадобится измерить наличие выходных напряжений и, если есть осциллограф, посмотреть форму сигналов.
  7. На следующем этапе нужно нагрузить компьютерный блок на максимальную нагрузку и, контролируя выходные сигналы, оставить его работать в течение часа.
  8. На последнем этапе БП устанавливается в системный блок и производится его включение.

Необходимо отметить, что при ремонте импульсных блоков питания своими руками запуск и проверку, кроме последнего этапа, лучше проводить автономно от ПК. Для этого на 20 пиновом шлейфе (24 пиновом) замыкается зелёный провод PS-ON c чёрным Com. Такой запуск безопасен, так как в качестве нагрузки выступает кулер, но в случае подозрения на его неисправность желательно нагрузить основные линии нагрузкой, например, ненужным CDRom или HDD.

Возможные неисправности БП

Использование в течение многих лет отработанной схемы импульсного преобразователя позволило сделать ее крайне надежной.

Поэтому большинство неисправностей БП персональных компьютеров связаны либо со старением его компонентов, либо со значительными отклонениями питания или нагрузки от номинальных параметров. Отдельно стоит упомянуть перегрев выходных каскадов из-за накопления пыли внутри БП при недостаточной частоте обслуживания компьютера.

Сильнее всего старение сказывается на состоянии электролитических конденсаторов выпрямителя и выходных каскадов. Со временем они деградируют, теряя емкость, что приводит к заметному росту пульсаций напряжения на выходе блока, что может приводить к сбоям в работе ПК. Также, особенно в дешевых блоках, старение электролитических конденсаторов сопровождается их заметным вздутием, иногда приводящему к их разрушению с характерным хлопком.

Значительный рост напряжения питания или избыточная нагрузка способны привести к перегреву и короткому замыканию внутри диодного моста входного выпрямителя. В этом случае переменный ток из сети поступает в цепи, не рассчитанные на работу с ним: разрушаются электролитические конденсаторы, рассчитанные на однополярное питание, повреждаются ШИМ-контроллер и его транзисторная обвязка. Зачастую повреждение БП при этом делает его ремонт менее рентабельным по сравнению с полной заменой.

Отказ выходных транзисторов импульсного преобразователя чаще всего является следствием их длительного перегрева, вызванного перегрузкой или недостаточным охлаждением.

Методичка – инструкция диагностики.

После извлечения блока из системника его необходимо вскрыть, отвернув винты на корпусе. Также открутив винты, вынуть плату.
После чего необходимо взяться за визуальный осмотр. Это очень ответственная и важная часть диагностики.


При помощи визуального осмотра мы определяем неисправные элементы.

Осматриваем плату на предмет механических повреждений электронных компонентов, а так же потемнения-обгорания силовых элементов. Это могут быть вздутые электролитические конденсаторы, обуглившиеся резисторы, лопнувшие микросхемы и транзисторы.


Мы также оцениваем на сколько пострадал блок питания.

После осмотра электронных компонентов на целостность переходим на осмотр печатного монтажа. Здесь нам не помешает хороший свет и хорошая увеличительная лупа. Необходимо визуально, дотошно, пайку за пайкой просмотреть её качество. Дело в том что припой со временем деградирует, становится рассыпчатым и места пайки теряют контакт. Так же образуются так-называемые “колечки” – это кольцевые трещины в месте пайки элемента. Чаще такие колечки можно встретить в силовых частях БП – на транзисторах, выходных диодах Шоттки. А так же на всех элементах которые греются и стоят на радиаторе. Хотя от колечек не застрахован ни один элемент даже в низковольтной части, например микросхема ШИМ-контроллера.


Кольцевые трещины

Если при визуальном осмотре ничего не обнаружилось, то переходим к следующему этапу действий:

Далее следует проверить предохранитель. Проверять его следует мультиметром в режиме прозвонки, потому как внешне он может выглядеть как исправный.


Слева: Предохранитель может прятаться под термоусадочной трубкой и занимать вертикальное положение.

Предохранители просто так не сгорают. Причина может крыться в коротком замыкании диодного моста или ключевых каскадов как основного так дежурного источника питания.

Проверяем далее термистор Обычно его сопротивление 5-10 Ом. Если он в обрыве, то меняем его. В маломощных блоках питания его можно заменить перемычкой. В блоках питания ПК это может привести к пробою диодного моста во время заряда конденсатора фильтра, поэтому заменяем таким же.


На рисунке обозначен термистор

Внимание!!! Не путайте термистор с варистором! Термистор обычно черного цвета и стоит в разрыв цепи переменного тока, а варистор чаще синего,зеленого или желтого цвета и стоит параллельно сети (чаще его раскалывает на две-три части) у исправного варистора наоборот сопротивление бесконечно большое. И если у позистора задача смягчить ток заряда электролитического конденсатора, то целью варистора является защитить БП на входе от перенапряжения переменного тока, перекоса фаз, попадания грозового разряда в электропроводку.


На рисунке изображен предохранитель, термистор и варистор.

Следующим на очереди у нас диодный мост. Выпрямитель на диодном мосту может быт собран как из 4-х отдельных диодов, так и в монолитном корпусе. У диодов не должно быть короткого замыкания, а также обрывов. Если вы обнаружили неисправный диод или весь мост – это не значит что его замена решит все проблемы.


Диодный мост из отдельных диодов и в виде сборки.

Поступающий переменный ток через неисправный выпрямитель мог вывести из строя ключевые транзисторы и ШИМ. Кроме того, ситуация могла быть прямо-противоположная: Вышедший из строя транзистор (встав на к.з.) в инверторе БП мог перегрузить диодный мост и он мог коротнуть именно из-за этого. Поэтому после замены выпрямителя необходимо убедиться – нет ли короткого замыкания дальше по цепи. Проверить это можно при выпаянных диодах – на электролитическом конденсаторе фильтра не должно быть короткого, а в силовой части источника питания разорванных транзисторов, сопротивлений и других элементов.

Проверка электролитов по входу (конденсаторов по фильтру питания) требуется начать с осмотра.


Входные электролитические конденсаторы фильтра питания.

Они не должны быть вздутыми или иметь еще какие-то нарушения своей формы. Не должно быть наличия электролита на печатной плате. Конденсаторы нужно проверить на емкость, она должна быть не менее 10% от номинальной. Кроме этого цепи электролитических конденсаторов стоят варисторы и резисторы, которые также нужно протестировать.

Проверка ключевых транзисторов.


На фото два ключевых транзистора.

Для того чтобы удостовериться в целостности силовых ключевиков следует прозвонить переходы база – эмиттер, база – коллектор, коллектор – эмиттер. Первые два перехода должны звониться как диод. Коллектор-эмиттер как бесконечное сопротивление, но только в том случае если в данном транзисторе нет встроенного демпферного диода. Если найдены транзисторы с коротким замыканием, то радоваться рано – замена на новые ни к чему хорошему не приведет. Транзисторы не выгорают по-одиночке! Тестируем всю обвязку – низкоомные
резисторы, диоды, стабилитроны, электролитические конденсаторы. Ключевики БП меняем парой, даже если пробой найден у одного.

Тестируем сборки диодов Шоттки с помощью мультиметра.

В основном они встают на пробой, то есть на короткое замыкание.
Если есть подозрение на какую-либо сборку, то лучше выпаять и проверить её отдельно, чтобы другие элементы выходной цепи не вносили погрешности и не вводили в заблуждение. Диода в сборке нужно измерять в режиме прозвонки. Прямое напряжение падения у диодов Шоттки 120-160 мВ. по прибору.

Проверка электролитических конденсаторов (выходных) Зачастую по внешнему виду можно определить что конденсатор необходимо заменить.


Вздутые конденсаторы.

Чаше их вздувает, вскрывается верхняя часть с насечками или вытекает электролит (видны следы на плате). Бывает что нормально выглядевший при визуальном осмотре конденсатор, оказывается с большой утечкой ёмкости. Определить это можно только измерив емкость мультиметром с данной функцией или отдельным прибором для проверки конденсаторов.
В основном именно электролитические конденсаторы становятся причиной поломки импульсного модуля питания. В 75% случаев простая замена электролитов как в выходной части так и в задающей может вернуть БП к жизни, при условии что не пострадали ключи, ШИМ, выпрямители.

Проверка выходных цепей питания включает в себя еще проверку сопротивления выхода. Для цепи +3,3 оранжевый провод сопротивление составляет от 4 до 20 Ом. Для других напряжений от 90 до 300 Ом. Измерять нужно мультиметром в режиме измерения сопротивления относительно общего провода COM (GND)- черный провод.

Проверка элементов и частые поломки

Чтобы починить БП понадобятся не только знания в электронике, но и наличие измерительного и рабочего инструментов. Из измерительных приборов используются: мультиметр, измеритель ёмкости, осциллограф. Хорошо также иметь и генератор. А из инструмента не обойтись без крестовых отвёрток и паяльных принадлежностей. Для 80% повреждений можно обойтись мультиметром, но исследовать микросхемы и формы сигналов можно будет только осциллографом.

Измерения параметров радиоэлементов

Компьютерный источник питания состоит как из пассивных, так и активных радиоэлементов. Измерение параметров радиодеталей необходимо проводить после выпаивания из платы, так как, находясь в схеме, их выводы, могут шунтироваться другими элементами. Для элементов с двумя выводами можно отрывать от платы только один из них.

Измерение резисторов проводится мультиметром, для этого сравнивается соответствие измеренного сопротивления со значением, соответствующим его маркировке. Диоды и стабилитроны проверяются на наличие пробоя в обе стороны, мультиметр ставится в режим прозвонки. Конденсаторы измеряются на соответствие их ёмкости и ёмкостного сопротивления, для этого используется ESR-метр. Биполярные транзисторы проверяются аналогично диодам в режиме прозвонки, а в случае полевых транзисторов проверка происходит на способность их открываться и закрываться.

Типовые отказы

Так как схемотехника компьютерных источников питания существенно не изменяется, существуют типовые неисправности и способы их решения. В первую очередь понадобится попробовать стартовать БП в автономном режиме. В случае неудачи — разобрать его и визуально осмотреть электролитические конденсаторы на вздутие и потёки. Около 70 процентов неисправностей связаны с выходом из строя конденсаторов, и отремонтировать БП получается путём простой их замены на исправные. Если решено ремонтировать БП самостоятельно, то можно воспользоваться следующей инструкцией:

  • Устройство не включается. Сгорает плавкий предохранитель F1, пробит диодный мост. Вышел из строя разделительный фильтр, терморезисторы находятся в обрыве. Высоковольтный конденсатор потерял свою ёмкость. Силовые транзисторы в обрыве или пробиты.
  • Устройство не хочет включаться, на высоковольтном конденсаторе присутствует напряжение 310 вольт. Неисправна схема дежурного питания, заменить микросхему ШИМ — контроллера. При отсутствии стабилизированных пяти вольт проверяется подтягивающий резистор 1 кОм. Неисправна цепь супервизора, ёмкости и резисторы в её цепи.
  • Стабилизированные напряжения занижены или завышены. Нарушения в работе стабилизирующей цепи, проверяются интегральные микросхемы. Неисправна микросхема ШИМ контроллера.
  • Уровни выходных сигналов занижены. Виновата цепь обратной связи. Нарушена работа ШИМ контролера, повреждены радиоэлементы в её обвязке.
  • При включении срабатывает защита. Повреждён узел дежурного питания. Сгорела микросхема супервизора, элементы обвязки её цепи. Присутствует короткое замыкание в выходных формирователях напряжения.
  • При работе выключается. Перегрев, очистить от пыли, смазать кулер, заменить термопасту.
  • Не крутит вентилятор. Отсутствует питающее напряжение 12 вольт. Обрыв терморезистора. Повреждён вентилятор.

Как правильно разбирать блок питания

Разборка компьютерного блока питания должна производиться с соблюдением всех мер предосторожности. В первую очередь, надо отключить сетевой шнур от источника питания и подождать несколько секунд для разряда конденсаторов.

Для высоковольтных оксидных конденсаторов выпрямителя этих мер недостаточно. Их надо разрядить с помощью резистора или лампочки на 220 вольт. Во время разрядки надо следить, чтобы случайно не прикоснуться к выводам конденсатора, припаянным к контактным площадкам или к неизолированной части выводов разрядного элемента.

Читайте также

Как снять и заменить блок питания компьютера

Начало любого ремонта – визуальный осмотр

Чтобы понять, что не так с блоком питания и почему он не работает, нужно провести визуальный осмотр устройства. Бывают ситуации, когда БП просто запылился и для решения проблемы достаточно его почистить.
В визуальном осмотре прибора нужно проверить следующие моменты:

  • работу системы охлаждения. Вентилятор должен быть очищен от пыли и хорошо крутиться. Если он не крутится, то причина поломки кроется в нем;
  • электросхему на предмет наличия в ней сгоревших элементов. Некоторые детали при сгорании чернеют. Поэтому их можно определить визуально. Для некоторых элементов придется применять мультиметр. Также нужно проверить дорожки и провода на предмет обрывов.

Обратите внимание! При перегреве текстолиты чернеют, а неисправные конденсаторы выглядят опухшими.

Наиболее часто причинами поломки преобразователя являются:

  • устройство не включается. У него отсутствует напряжения дежурного питания;
  • преобразователь не включается при имеющемся дежурном напряжение. При этом у него отсутствует сигнал PG;
  • у БП включается защита;
  • устройство работает, но от него исходит неприятный запах;
  • диагностируется слишком высокие или низкие выходные напряжения.

Привести к поломке блока питания могут самые разнообразные ситуации. Причем БП может, как сразу перестать работать, так и продолжать функционировать, но с периодическими сбоями.
После выявления причины неполадки, можно приступать к ремонту блока питания своими руками. При этом нужно помнить, что несмотря на схожий принцип работы преобразователи имеют разнообразные схемы.

Схематическое отображения устройства блока питания

Вариант схемы блока питания

Обычно схемы различаются как по видам БП, так и по его предназначению (для компьютера, телевизора, планшета, мобильного телефона и т.д.). Поэтому, чтобы ремонт блока питания, проведённый своими руками, удался, первым делом необходимо раздобыть его схему. Не лишним будет сервисное руководства от конкретной аппаратуры.

Back To Top