Температура плавления нержавеющей стали и ее использования + Видео

Температура плавления нержавеющей стали и ее использования + Видео

1 Что такое температура плавления и как она себя проявляет у нержавеющих сплавов

Температура плавления – это такое значение нагрева кристаллического твердого тела из любого чистого вещества, при котором оно переходит в жидкое состояние. Причем эта же температура одновременно является и температурой кристаллизации. То есть у чистых веществ эти 2 температуры совпадают. И, таким образом, при температуре плавления чистое вещество может быть как в жидком состоянии, так и в твердом.

Что такое температура плавления и как она себя проявляет у нержавеющих сплавов
Нержавеющие стали не являются чистыми веществами

Если при этом произвести дополнительный нагрев, то вещество станет жидким, а его температура не будет меняться (повышаться), пока оно полностью все в рассматриваемой системе (теле) не расплавится. Если же наоборот, начать отведение тепла – охлаждать вещество – то оно начнет застывать (переходить в твердое кристаллическое состояние) и, пока полностью не затвердеет, его температура не изменится (не понизится).

Таким образом, температуры плавления и кристаллизации имеют одинаковую и такую величину для чистого вещества, при которой оно может находиться в жидком или твердом состоянии, а переход в одну из этих фаз происходит сразу и с последующим изменением температуры при, соответственно, дополнительном нагреве либо отводе тепла.

Сплавы, в том числе и нержавеющие, не являются чистыми веществами. В них помимо основного металла есть дополнительные легирующие элементы, а также примеси. То есть сплавы являются смесью веществ. А у всех без исключения смесей веществ отсутствует в общепринятом (приведенном выше) понимании температура плавления/кристаллизации. Они, в том числе и нержавеющие сплавы, переходят из одного состояния в другое в некотором определенном диапазоне температур. При этом температура начала перехода в жидкую фазу (она же – застывания) имеет название «точка солидуса». А температуру полного расплавления называют «точка ликвидуса».

Точно измерить температуры солидус и ликвидус (плавления) для большинства смесей веществ, включая нержавеющие сплавы, невозможно. Для их определения применяют специальные расчетные методы, устанавливаемые ГОСТ 20287 и стандартом ASTM D 97.

Кристаллические решетки металла

Под воздействием высокой температуры на металлическую деталь, возникают изменения в ее кристаллической решетке на молекулярном уровне. Это увеличивает скорость движения молекул. При критической температуре происходит распад молекулярной структуры металла, потому что межмолекулярные связи не в состоянии производить удержание в узловой структуре решетки. И вместо колеблющихся движений в узле возникают хаотичные, разнонаправленные движения, образуя ванну расплава в точках плавления.

2 От чего зависит температура расплавления нержавеющих сталей

Значение температуры полного расплавления (ликвидус) нержавеющей стали зависит от химического состава сплава, то есть от тех металлов и примесей, из которых он состоит. При этом определяющая роль, разумеется, будет всегда за тем элементом, который основной либо имеет наибольшую концентрацию. А примеси и легирующие добавки в зависимости от своей концентрации только корректируют температуру ликвидус основного или доминантного по содержанию в сплаве металла в большую или меньшую сторону.

От чего зависит температура расплавления нержавеющих сталей
Ликвидус зависит от химического состава сплава

Можно, для примера, рассмотреть легированные нержавеющие сплавы. Это один из видов коррозионно-стойких сплавов согласно классификации нержавеющих сталей ГОСТ 5632-2014 (введенному взамен стандарта 5632-72), по которому их сейчас производят. Кстати, классификация в этом ГОСТ произведена исходя из того, какой состав нержавеющих сталей.

В легированных нержавеющих сплавах основным металлом и элементом их химического состава является железо (Fe) с температурой плавления 1539 оC. И вот как будут влиять на температуру ликвидус таких сталей примеси и легирующие добавки в зависимости от своей концентрации в %:

  • углерод (C), марганец (Mn), кремний (Si), сера (S) и фосфор (F) – каждый по-своему в той или иной степени снижают;
  • молибден (Mo), титан (Ti), ванадий (V) и никель (Ni) – в пределах тех соотношений, в каких используются для изготовления нержавеющих сталей, снижают в той или иной степени (если рассматривать сплавы только из одного из этих элементов и железа с любыми соотношениями этих металлов, то начиная с определенной концентрации, повышают обратно);
  • алюминий (Al) – в пределах тех соотношений, в каких он используется для изготовления нержавеющих сталей, никак не влияет (если рассматривать сплавы только из Al и Fе с любыми соотношениями этих металлов, то начиная с определенной концентрации, значительно снижает);
  • вольфрам (W) – в пределах тех соотношений, в каких он используются для изготовления нержавеющих сталей, снижает, пока его концентрация не достигает 4,4 %, а потом незначительно повышает обратно;
  • хром (Cr) – в пределах тех соотношений, в каких он используются для изготовления нержавеющих сталей, снижает, пока его концентрация не достигает 23 (22) %, а потом повышает обратно;
  • никель (Ni) – в пределах тех соотношений, в каких он используются для изготовления нержавеющих сталей, снижает.

Стоит подробнее остановиться на влиянии никеля. Наибольшее влияние он оказывает на температуру ликвидус (полного расплавления) 2-х других видов нержавеющих сталей стандарта 5632. Речь идет о сплавах: одни – на железоникелевой, а другие – на никелевой основе. Характерная особенность состава первых – в них суммарная массовая доля никеля и железа больше 65 %, причем Fe является основным элементом, концентрация Ni варьируется в пределах от 26 до 47 %, а приблизительное соотношение между ними 1:1,5. В сплавах, отлитых на никелевой основе, никеля не менее 50 %, железа может не быть вообще, а максимальная его концентрация – 20 %.

В этих двух видах сплавов у никеля вообще превалирующее по сравнению со всеми вышеуказанными примесями и легирующими металлами влияние на температуру ликвидус. И это не удивительно, ведь в них Ni значительно больше, чем в нержавеющих легированных сталях (на основе железа). У железоникелевых и никелевых сплавов в первую очередь из-за Ni их температура ликвидус ниже температурного значения плавления железа. И она близка к температуре плавления самого никеля (которая равна 1455 оC).

Причем в железоникелевых сплавах никель по мере возрастания своей массовой доли способствует только снижению температуры ликвидус стали, потому что предельная его концентрация в них, как отмечалась выше, 47 %. А в никелевых сплавах снижение температуры ликвидус наблюдается только до 68 % содержания Ni. А дальнейшее повышение концентрации этого металла ведет к обратному повышению температуры полного расплавления никелевых сплавов.

Что влияет на температуру плавления нержавейки

В табличных значениях, ГОСТах указывается t плавления чистых металлов, это постоянная величина. Теоретически температуру плавления нержавейки определить сложно, так как система металлов порой ведет себя непредсказуемо. В металловедении различают два понятия: расплава и кристаллизации. Нержавеющие сплавы кристаллизуются и переходят в жидкость не при фиксированной температуре, а в определенном диапазоне. Этот интервал рассчитывается по регламентированным методикам с учетом компонентного состава, свойств двухкомпонентных и трехкомпонентных систем.

В табличных значениях, ГОСТах указывается t плавления чистых металлов, это постоянная величина.

При производстве нержавеющих сплавов образуются сложные вещества, основу которого составляет железо. В чистом виде этот химический элемент плавится при +1539°C, когда присутствуют примеси, t плавления повышается или понижается в зависимости от состава сплава. Необходимо отметить, что основным компонентом нержавейки остается Fe, но температура фазового перехода существенно меняется, когда в нержавеющем сплаве имеются другие металлы.

Как влияют определенные легирующие добавки на физические свойства железа:

  • снижают точку фазового перехода примеси углерода, фосфора, серы, кремния;
  • алюминий снижает только в двухкомпонентных системах, при незначительных концентрациях не влияет;
  • хром снижает, если в нержавеющем сплаве содержится до 23% этого металла, при большей концентрации хрома сталь необходимо нагревать сильнее, ликвидус повышается (хром часто вводится совместно с никелем, присутствует в жаропрочных марочных сталях);
  • молибден легкоплавкий, нержавеющие стали с этим металлом расплавить легче;
  • вольфрам – тугоплавкий, по степени влияния на ликвидус схож с титаном, используется в жаропрочных и термически устойчивых сплавах, оба металла значительно повышают жаропрочность нержавейки (ванадий и титан нередко вводят вместе);
  • никель в концентрациях, используемых для легирования, снижает температуру фазового перехода.
Металлt плавления, C
Железо 1540
Медь 1084
Магний 650
Никель 1455
Молибден 2622
Хром 1907
Марганец 1244

Читайте также:  Как заварить чугун электродом в домашних условиях

Нержавеющие сплавы с никелем классифицируют по двум группам:

  • железоникелевые с содержанием железа выше 65%, никеля от 26 до 47% (соотношение 1:1,5);
  • никелевые, содержание этого легирующего металла в пределах 50%, доля железа в пределах 20%.

В этих сплавах влияние никеля особенно заметно, температура плавления значительно ниже, чем у железа, приближается к t плавления чистого никеля (+1455°C). В железоникелевых системах снижение ликвидуса пропорционально изменению концентрации никеля. В никелевых сплавах снижение температуры ликвидус наблюдается только до предельной концентрации никеля, 68%, при увеличении доли этого металла t постепенно увеличивается.

Достоинства и недостатки

Свойства жаропрочных сталей делают незаменимым этот материал в таких сферах, как ракетостроение и космическая отрасль, сложное двигателестроение, авиапромышленность, производство ключевых элементов газовых турбин и многих других. Их доля в прокате высокотехнологичной стали достигает 50%. Некоторые сплавы способны работать при температуре свыше 7000° С.
Этот сложный в производстве материал, изготовление которого невозможно без специального оборудования и квалифицированного персонала, имеет высокую себестоимость. Использование подобных сталей не может быть универсальным, поэтому для его эффективного применения необходимо наличие развитой научно-технической базы.

Рабочая температура нержавеющей стали, температура применения жаропрочных сталей и сплавов

Представлены таблицы значений максимальной рабочей температуры стали (нержавеющей, жаропрочной и жаростойкой) распространенных марок при различных сроках эксплуатации. Указана также температура, при которой сталь начинает интенсивно окисляться на воздухе.
Таблицы позволяют подобрать необходимую марку нержавеющей стали или сплава на железоникелевой основе под определенные условия эксплуатации и заданный срок службы.

В первой таблице приведена рабочая температура (максимальная температура применения) нержавеющих сталей и сплавов на железоникелевой и никелевой основах, предназначенных для работы в окислительной среде от 50 до 100 тысяч часов.

По данным таблицы видно, что при сверхдлительной эксплуатации максимальная рабочая температура рассмотренных марок стали не превышает 850°С (нержавеющая сталь 05ХН32Т), а «запас» до температуры интенсивного окалинообразования составляет от 200 до 500 градусов.

Температура применения стали при сверхдлительной эксплуатации (до 100 тыс. часов)

Марка стали или сплава Максимальная температура применения, °С Температура начала интенсивного окалинообразования на воздухе, °С
05ХН32Т (ЭП670) 850 1000
08Х15Н24В4ТР (ЭП164) 700 900
08Х16Н13М2Б (ЭИ680) 600 850
09X16Н4Б (ЭП56) 650 850
09Х14Н19В2БР (ЭИ695Р) 700 850
09Х14Н19В2БР1 (ЭИ726) 700 850
09Х16Н15М3Б (ЭИ847) 350 850
12X13 550 750
12Х18Н10Т 600 850
12Х18Н12Т 600 850
12Х18Н9Т 600 850
12ХН35ВТ (ЭИ612) 650 850…900
13Х14Н3В2ФР (ЭИ736) 550 750
15Х11МФ 580 750
16X11Н2В2МФ (ЭИ962А) 500 750
18Х11МНФБ (ЭП291) 600 750
18Х12ВМБФР (ЭИ993) 500 750
20Х12ВНМФ (ЭП428) 600 750
20Х13 500 750
31Х19Н9МВБТ (ЭИ572) 600 800
55Х20Г9АН4 (ЭП303) 600 750
ХН65ВМТЮ (ЭИ893) 800 1000
ХН70ВМЮТ (ЭИ765) 750 1000
ХН80ТБЮ (ЭИ607) 700 1050

Во второй таблице представлена максимальная рабочая температура стали при длительной эксплуатации длительностью до 10 тысяч часов. По значениям температуры в таблице видно, что при менее длительном применении стали возможно увеличение ее рабочей температуры. При этом «запас» до температуры интенсивного окалинообразования уменьшается.

Например, максимальная рабочая температура нержавеющей стали 12Х18Н9Т при длительной эксплуатации на 200 градусов выше, чем при сверхдлительной. Эта сталь может применяться при температуре до 800°С в течении 10 тысяч часов.

Максимальная рабочая температура из приведенных в таблице марок соответствует стали 10ХН45Ю — она может использоваться при 1250…1300°С.

Температура применения стали при длительной эксплуатации (до 10 тыс. часов)

Марка стали или сплава Максимальная температура применения, °С Температура начала интенсивного окалинообразования на воздухе, °С
03X21Н32М3Б (ЧС33) 550…750
03X21Н32М3БУ (ЧС33У) 550…750
05Х12Н2М 550
07Х15Н30В5М2 (ЧС81) 850
08Х16Н11М3 600
08X18Н10 800 850
08Х18Н10Т (ЭИ914) 800 850
09X18Н9 550
10Х18Н9 550
10Х23Н18 1000 1050
10ХН45Ю (ЭП747) 1250…1300
11Х11Н2В2МФ (ЭИ962) 600 750
12Х18Н9 800 850
12Х18Н9Т 800 850
12Х18Н10Т 800 850
12Х18Н12Т 800 850
12Х25Н16Г7АР (ЭИ835) 1050 1100
12ХН38ВТ (ЭИ703) 1000 1050
13Х11Н2В2МФ (ЭИ961) 600 750
14Х17Н2 (ЭИ268) 400 800
15Х12ВНМФ (ЭИ802) 780 950
16X11Н2В2МФ (ЭИ962А) 600 750
20Х23Н13 (ЭИ319) 1000 1050
20Х23Н18 (ЭИ417) 1000 1050
20Х25Н20С2 (ЭИ283) 1050 1100
36Х18Н25С2 1000 1100
37Х12Н8Г8МФБ (ЭИ481) 630 750
40Х9С2 650 850
40X10С2М (ЭИ107) 650 850
45Х14Н14В2М (ЭИ69) 650 850
45Х22Н4М3 (ЭП48) 850 950
ХН33КВЮ (ВЖ145, ЭК102) 1100
ХН45МВТЮБР (ВЖ105, ЭП718) 700
ХН54К15МБЮВТ (ВЖ175) 750
ХН55К15МБЮВТ (ЭК151) 750
ХН55МВЦ (ЧС57) 950
ХН55МВЦУ (ЧС57У) 950
ХН56К16МБВЮТ (ВЖ172) 900
ХН56КМЮБВТ (ЭК79) 750
ХН58МБЮ (ВЖ159, ЭК171) 1000
ХН59КВЮМБТ (ЭП975) 850
ХН60ВТ (ЭИ868, ВЖ98) 1000 1100
ХН60Ю (ЭИ559А) 1200 1250
ХН62БМКТЮ (ЭП742) 750
ХН62ВМЮТ (ЭП708) 900
ХН62МВКЮ (ЭИ867) 800 1080
ХН67МВТЮ (ЭП202) 800 1000
ХН68ВМТЮК (ЭП693) 950
ХН69МБЮТВР (ВЖ136, ЭК100) 650
ХН70ВМТЮ (ЭИ617) 850 1000
ХН70ВМТЮФ (ЭИ826) 850 1050
ХН70Ю (ЭИ652) 1100 1250
ХН73МБТЮ (ЭИ698) 700 1000
ХН75ВМЮ (ЭИ827) 800 1080
ХН75МБТЮ (ЭИ602) 1050 1100
ХН78Т (ЭИ435) 1100 1150

Температура плавления и использования нержавеющей стали – что важнее?

Температура плавления нержавеющей стали является одной из важнейших физических характеристик металлов и сплавов. Однако знание ее величины на практике необходимо достаточно узкому ряду специалистов и промышленно-производственного персонала предприятий, имеющих отношение к литейному делу. Всем же потребителям любого проката из нержавейки следует знать совсем другие параметры этих сплавов – температуры применения и обработки для улучшения качеств.

Проведение плавки металла

Припой для нержавеющей стали
У олова температура плавления во многом зависит от того, есть ли примеси. Температура, при которой металл становится пластичным или жидким, может варьировать в пределе от 145 до 250 градусов Цельсия в зависимости от состава. При необходимости можно провести расплавку большого количества металла для его заливки по форме.

При выборе материала для создания формы учитываются нижеприведенные моменты:

  1. Структура не должна смачиваться жидким оловом. В противном случае форма может изменить свои размеры.
  2. Используемый материал должен выдерживать воздействие температуры не ниже 250 градусов Цельсия. В противном случае после заливки форма потеряет свои основные эксплуатационные качества.

Стоит учитывать, что в жидкой форме рассматриваемый металл может окисляться при контакте с воздухом. Твердое вещество, наоборот, обладает повышенной устойчивостью к кислородной коррозии.

Довольно большое распространение в электротехнике получил трехкомпонентный сплав, основой которого стал свинец. В качестве дополнительных компонентов могут использоваться олово и серебро

При производстве подобного сплава уделяется внимание тому, что концентрация металла не должна быть менее 95%. При подобном варианте сочетание веществ температура плавления составляет около 220 градусов Цельсия

Показатели для разных сталей

Итак, выделяют несколько видов сталей: обычная, легированная, низколегированная и высоколегированная, а также нержавеющая. Каждая характеризуется определенным содержанием добавок, выраженном в процентном соотношении. Выше уже были определены температуры плавления популярных разновидностей сталей. Для сталей Ст3, 35, 40 или 20 он будет лежать в пределах от 1200 до 1500 градусов. Отдельной категорией стоит выделить чугун, который представляет собой сплав углерода и железа. В материале также присутствуют:

  • марганец;
  • кремний;
  • сера;
  • фосфор.

Чугун отличается повышенной устойчивостью к воздействию высоких температур, способен выдержать длительные нагрузки и негативные воздействия. Выделяют четыре вида чугуна.

  • Белый. Самый прочный материал, который дополнительно делят на доэвтектический, эвтектический и заэвтектический. Белым он называется за характерный оттенок, который приобретает в процессе изготовления. Обладает внушительной массой, подходит для изготовления механических деталей.
  • Серый. Состав чугуна также включает фосфор, небольшое количество серы и кремния. Отличается простотой изготовления и неплохими механическими свойствами. В основном используется для производства деталей, которые подвергаются воздействию ударных нагрузок.
  • Ковкий. Подвид белого, который получают посредством длительного нагрева и выдержки материала. Обладает повышенной прочностью и легко поддается обработке.
  • Высокопрочный. Считается наиболее прочным среди перечисленных за счет содержания в составе углерода, марганца, серы и фосфора. А также обладает повышенной ударной вязкостью, подходит для изготовления коленчатых валов и труб.

Неудивительно, что температуры плавления стали и чугуна отличаются. Если внимательно изучить таблицу, то параметр для чугуна находится в промежутке между 1100 и 1200 градусами по Цельсию. Интересно, что температуры кипения у материалов одинаковые, и у чугуна удельный показатель также составляет 3000 градусов.


4 Какие параметры нагрева нужны потребителям нержавейки?

Всем потребителям любых изделий из нержавеющей стали, не собирающимся их расплавлять (то есть утилизировать методом переплавки), вовсе не нужно знать температуру плавления этих сплавов.


Тем, кто занимается проектированием, разработкой и изготовлением деталей, продукции и конструкций из нержавеющих сталей, а также их эксплуатацией, необходимо знать совсем другие температурные параметры этих сплавов:

  • параметры термообработки нержавейки – закалки, отпуска, отжига и так далее;
  • температурные режимы других видов обработки – ковки, сварки и так далее;
  • для коррозионно-стойких марок – в каком интервале температур эксплуатировать;
  • для жаростойких марок – максимальная рекомендуемая температура применения на протяжении длительного времени (обычно составляет до 10000 часов);
  • для жаропрочных марок – рекомендуемая температура применения;
  • для жаростойких и жаропрочных марок – когда в воздушной среде начинается интенсивное окалинообразование.

Читать еще:  Какие инструменты применяются для нарезания резьбы

Эти температуры указаны в приложении А вышеупомянутого стандарта 5632 и есть в соответствующих справочниках по металловедению, металлообработке и так далее, а также должны быть в документации производителей на соответствующие марки нержавейки. И эти температуры намного ниже той, при которой начинается плавление нержавеющих сталей. Так что, если ориентироваться на последнюю, то при том или ином использовании изделий из нержавейки их требуемые для определенного вида применения физические свойства будут утрачены задолго до расплавления.

Основные моменты технологии производства

Суть производства стали заключается в том, чтобы в процессе переработки исходного материала в нём понизилась концентрация углерода, серы, фосфора и других нежелательных составляющих. Эти элементы делают сталь ломкой и хрупкой, а избавление от них приносит повышенную прочность и жаростойкость. Исходным материалом чаще всего выступает чугун и стальной лом.
Процесс производства может быть выполнен одним из двух основных способов, которые обобщают собой однотипные методы – это либо конвертерный, либо подовый процесс. Первый не требует дополнительных источников тепла, так как его используют для расплавленного передельного чугуна, который и так обладает достаточной температурой. В этом случае происходит вдувание чистого кислорода (или обогащённого им воздуха, что уже устарело) в расплавленный металл, который окисляет присутствующие в чугуне элементы типа фосфора, марганца, кремния или углерода. Это, в свою очередь, позволяет поддерживать достаточное количество тепла для пребывания стали в жидком состоянии.

При таком изготовлении может получиться три вида стали – кипящая, полуспокойная и спокойная. Спокойная сталь обладает лучшим составом и более однородной структурой, когда кипящая содержит в себе весомое количество растворённых газов. Для полуспокойной характерны промежуточные значения между первыми двумя видами. Естественно, что спокойная сталь, исходя из лучших характеристик, дороже. Её цена выше, чем у кипящей, примерно на 10-15%.

Подовые процессы происходят при высоких температурах, которых добиваются за счёт задействования внешнего источника тепла для переработки твёрдой шихты. Их есть два вида – мартеновский процесс и электротермический. Мартеновский происходит в результате нагрева исходного материала от сгорания газа или мазута, а электротермический выполняется в индукционных или дуговых печах, где нагрев идёт при помощи электричества.

При необходимости, для производства особых видов стали могут быть использованы два последовательных метода, а для отдельных специальных её видов существует иные специфические процессы. Кроме того, появляются новые методы производства, которые ещё не стали широко используемыми, но успешно развиваются. Такими методами является электрошлаковый переплав, электролиз, прямое восстановление стали из руды и т. д.

Читайте также:  Характеристики и особенности применения NPT резьбы

Свойства жаростойких и жаропрочных сплавов

Для повышения жаростойкости используются легирующие добавки, которые также улучшают прочность металлов. Благодаря легированию на поверхности сплавов образуется защитная пленка, снижающая скорость окисления изделий. Основные легирующие элементы: никель, хром, алюминий, кремний. В процессе нагрева образуются защитные оксидные пленки (Cr,Fe)2O3, (Al,Fe)2О. При содержании 5–8 % хрома жаростойкость стали увеличивается до 700–750 градусов по Цельсию, 17 % хрома – до 1000 градусов, при 25 % хрома – до 1100 градусов.

Жаропрочные марки металлов – сплавы на основе железа, никеля, титана, кобальта, упрочненные выделениями избыточных фаз (карбидов, карбонитридов и др.). Жаропрочностью обладают хромоникелевые и хромоникелевомарганцевые стали. Под воздействием высоких температур они не склонны к ползучести (медленная деформация при наличии постоянных нагрузок). Температура плавления жаропрочной стали составляет 1400-1500 °С.

Обработка стали для получения специальных свойств

Какими свойствами обладает обработанная сталь
Какими свойствами обладает обработанная сталь
Чтобы придавать материалу определённые свойства или изменять их, применяют легирующие элементы и различные виды обработки.

В качестве легирующих элементов выступают некоторые металлы. Ими могут быть хром, алюминий, никель, молибден и другие. Таким образом, добиваются определённых электрических, магнитных или механических свойств, а также коррозионной устойчивости. Так, нержавеющая сталь получается, если она была легирована хромом.

Изменяются свойства стали путём обработки:

  • термомеханической (ковка, прокатка);
  • термическая (отжиг, закалка);
  • химикотермической (азотирование, цементизация).

Термическая обработка имеет в своей основе свойство полиморфизма – при нагреве и охлаждении кристаллическая решётка способная менять своё строение. Это свойство характерно основе стали – железу, потому присуще и ей.

Разные виды элементов, которые могут присутствовать в стали

Углерод. С повышением процентного содержания в стали этого элемента увеличивается её прочность и твёрдость. Но идут потери в пластичности.

Сера. Эта примесь вредна, так как вместе с железом она образует сернистое железо. Из-за него в материале возникают трещины как следствие потери связей между зёрнами при обработке высокой температурой и под воздействием давления. Негативно наличие серы сказывается и на прочности стали, её пластичности, износостойкости, коррозийной стойкости.

Феррит. Это железо, которое обладает объемноцентрированной кристаллической решёткой. Характерно, что сплавы с его наличием выходят мягкими и обладают пластичной микроструктурой.

Фосфор. Если сера уменьшает прочность при высоких температурах, то фосфор придаёт стали хрупкости при температурах пониженных. Тем не менее есть группа сталей, в которой повышено содержание этого, казалось бы, вредного элемента. Изделия из такого металла очень легко поддаются резке.

Цементит, он же карбид железа. Его влияние противоположно к влиянию феррита. Сталь становится твёрдой и хрупкой.

Общее описание процесса

Чтобы понять, при какой температуре плавится сталь, нужно рассмотреть этот процесс более детально. Расплавление происходит при нагревании. Нагревать материал можно как снаружи, так и изнутри. Внешний нагрев осуществляется в термических печах. Для того чтобы расплавить сплав изнутри, используется резистивный нагрев. Принцип резистивного нагрева заключается в электросопротивлении, которым обладают любые материалы.

Вне зависимости от типа термического воздействия, в материалах происходят одинаковые изменения. За счет нагревания тепловые колебания молекул усиливаются, что приводит к структурным дефектам решетки. Такие изменения способствуют разрыву межатомных связей, в результате чего сплав переходит в жидкое состояние.

Как происходит процесс


Элементы, какими бы они ни были: золото, железо, чугун, сталь или любой другой — плавятся примерно одинаково. Это происходит при внешнем или внутреннем нагревании. Внешнее нагревание осуществляется в термической печи. Для внутреннего применяют резистивный нагрев, пропуская электрический ток или индукционный нагрев в электромагнитном поле высокой частоты. Воздействие при этом примерно одинаковое.

Когда происходит нагревание, усиливается амплитуда тепловых колебаний молекул. Появляются структурные дефекты решётки, сопровождаемые разрывом межатомных связей. Период разрушения решётки и скопления дефектов и называется плавлением.

В зависимости от градуса, при котором плавятся металлы, они разделяются на:

  1. легкоплавкие — до 600 °C: свинец, цинк, олово;
  2. среднеплавкие — от 600 °C до 1600 °C: золото, медь, алюминий, чугун, железо и большая часть всех элементов и соединений;
  3. тугоплавкие — от 1600 °C: хром, вольфрам, молибден, титан.

В зависимости от того, каков максимальный градус, подбирается и плавильный аппарат. Он должен быть тем прочнее, чем сильнее будет нагревание.

Вторая важная величина — градус кипения. Это параметр, при достижении которого начинается кипение жидкостей. Как правило, она в два раза выше градуса плавления. Эти величины прямо пропорциональны между собой и обычно их приводят при нормальном давлении.

Если давление увеличивается, величина плавления тоже увеличивается. Если давление уменьшается, то и она уменьшается.

Жаропрочные стали и сплавы




Жаропрочная сталь используется при изготовлении разных деталей, которые контактируют с агрессивными средами, при этом подвергаются значительным нагрузкам, вибрациям и высокому термическому воздействию. К примеру, сюда относятся следующие изделия: турбины, печи, котлы, компрессоры и т.п. Далее представлены характеристики термостойких, жаропрочных сплавов, классификация, марки, особенности их применения.

Жаростойкая сталь (или окалиностойкая) – металлический сплав, используемый в ненагруженном или слабонагруженном состоянии и способный на протяжении длительного времени в условиях высоких температур (более 550 ºС) сопротивляться газовой коррозии. Жаропрочные металлы – изделия, которые под высоким термическим воздействием сохраняют свою структуру, не разрушаются, не поддаются пластической деформации. Важная характеристика таких металлов – условный предел ползучести и длительной прочности. Жаропрочные сплавы могут быть жаростойкими, однако не всегда такими бывают, поэтому в агрессивных средах могут быстро повредиться по причине окисления.

Марки нержавеющей стали и их характеристики

Популярные марки нержавеющей стали отечественного и зарубежного производства.

AISI 304 – наиболее распространенная и популярная марка стали. Отличается высокой прочностью, упругостью, стойкостью к окислению, легко сваривается.

Сталь AISI 316 и 316Тi – улучшенный вариант AISI 304, с повышенной антикоррозийной устойчивостью и к воздействию агрессивной среды.

AISI 430 – экономичный вариант коррозийнностойкого материала, идеален для штамповки, деформации и перфорации.

Нержавеющая сталь – это разновидность легированной стали, устойчивая к коррозии за счет содержания хрома – 12% и более. В присутствии кислорода образуется оксид хрома, который создает на поверхности стали инертную пленку, защищающую все изделие от неблагоприятных воздействий. Современный рынок может предложить различные марки нержавеющей стали для применения в самых разных отраслях промышленности.

Не каждая марка нержавеющей стали демонстрирует устойчивость хромоксидной пленки к механическим и химическим повреждениям. Хотя пленка восстанавливается под воздействием кислорода, были разработаны специальные марки нержавейки для применения в агрессивных средах.

В чем заключается проблема

Конструкторы учитывают точку плавления нержавеющих сплавов, когда проектируют производства, связанные с высокими температурами и воздействием агрессивной среды. Рабочая t эксплуатации металла, разумеется, значительно ниже точки эвтектики (фазового перехода в жидкое состояние). Точка плавления одновременно является точкой кристаллизации, этот показатель важен при стерилизации вторичного металла, выделения отдельных компонентов.

При сварке металлоконструкций также полезно знать, при какой t под воздействием дуги образуется ванна расплава. Нагрев способен повлиять на состояние заготовок, приводят к возникновению внутренних напряжений.

Важный фактор, который влияет на точку эвтектики нержавеющих сплавов, это концентрация углерода. Чем выше % содержания элемента, тем ниже будет температура плавления. При увеличении доли легирования точка фазового перехода зависит от состава и соотношения легирующих компонентов. Железо в чистом виде относится к категории легкоплавких металлов, плавится при t выше, чем легированные нержавеющие стали. Компоненты, улучшающие потребительские свойства нержавейки, относятся к различным группам:

  • легкоплавкие (натрий, калий, висмут, олово и другие);
  • среднеплавкие (основные — алюминий, медь, кремний, кобальт);
  • тугоплавкие (например, вольфрам, титан, ванадий).

Для высокотемпературных технологий конструкторы выбирают нержавеющие сплавы с заданными физическими характеристиками. Самой важной остается t плавления. Иногда металл прогревается до критической отметки. Сложности с определением показателя возникают из-за многокомпонентности нержавейки. В зависимости от содержания легирующих компонентов металл плавится при +1300…1500°C, разлет в 200 градусов слишком велик, чтобы не обращать на него внимание. Углеродистые стали варят при температуре +1600°C, но для отдельных марок нержавейки такой нагрев станет губительным.

Как химический состав влияет на свойства нержавеющей стали

Как можно достичь стойкости металла к коррозии? При производстве в него добавляют ряд химических элементов, в результате вся поверхность покрывается оксидной пленкой. Она нерастворима и защищает сплав от образования ржавчины.

В качестве основного материала для изготовления нержавейки можно использовать никель и железоникель, а также сплавы на их основе. Добавление к базовому легирующих элементов придает стали различные свойства, в том числе и качества нержавеющей:

  • Хром увеличивает стойкость к коррозии, а также увеличивает прочность и твердость сплава. Уменьшение коэффициента линейного расширения упрощает процесс сварки.
  • Никель увеличивает пластичность и вязкость, а также прокаливаемость, он же понижает коэффициент теплового расширения. Это дает возможность использовать изделия вместе с различными кислотами: фосфорной, серной, соляной.
  • Стойкость сплава возрастает благодаря применению марганца в количестве более 1 %. Он одновременно увеличивает твердость, стойкость, прокаливаемость, а также устойчивость к износу. Часть марганца можно заменить на никель.
  • Влияние титана на свойства нержавеющей стали выражается в повышении плотности и прочности сплава, что повышает стойкость его и к коррозии.
  • Вольфрам снижает хрупкость и повышает твердость в процессе термической обработки (отпуска). Это происходит по причине возникновения таких соединений повышенной твердости, как карбиды.
  • Твердость, прочность и плотность сплава повышает ванадий.
  • Молибден придает антикоррозийные качества и увеличивает упругость нержавейки, повышает максимальный показатель прочности (предел) растяжения, а также сопротивляемость металла к высокой температуре.
  • Сварные конструкции защищаются ниобием, понижающим вероятность их коррозии.
  • Жаростойкость, кислотность, упругость и стойкость к образованию окалины повышает кремний. Он увеличивает прочность и электросопротивление, сохраняя уровень вязкости прежним.
  • Ударное сопротивление возрастает за счет добавки кобальта. Он же усиливает жаропрочные свойства материала.
  • Благодаря меди на металл не сможет повлиять атмосферная коррозия.
  • Посредством добавления алюминия снижается старение материала и повышается текучесть и ударная вязкость.

Благодаря своим исключительным характеристикам нержавейка и отличается от других металлов. Это дает возможность применять ее в таких сферах промышленности и жизнедеятельности, которые требуют использования конструкций, оборудования и изделий при высокой влажности, а также при регулярном влиянии агрессивной среды. Примером может служить использование материала для изготовления столовых приборов, а также ножей, оград, разных частей коммуникаций, элементов оборудования и пр.

Виды нержавеющих сталей и их свойства

Какой металл обладает самой высокой температурой плавления?

У вольфрама самая высокая температура плавления, которая составляет 34 220 °C. Он относится к самым тугоплавким металлам. Очень тяжел, с виду серых оттенков, имеет характерный блеск и практически не поддается стандартной обработке. В помещениях с комнатной температурой быстро ломается и крошится. И ломается из-за того, что содержит включения кислорода и углерода.

Таблица температур плавления металлов


Каждый металл или сплав обладает уникальными свойствами, в число которых входит температура плавления. При этом объект переходит из одного состояния в другое, в конкретном случае становится из твёрдого жидким. Чтобы его расплавить, необходимо подвести к нему тепло и нагревать до достижения нужной температуры. В момент, когда достигается нужная точка температуры данного сплава, он ещё может остаться в твёрдом состоянии. При продолжении воздействия начинает плавиться.

Наиболее низкая температура плавления у ртути — она плавится даже при -39 °C, самая высокая у вольфрама — 3422 °C. Для сплавов (стали и других) определить точную цифру крайне сложно. Все зависит от соотношения компонентов в них. У сплавов она записывается как числовой промежуток.

3 Так какая она, эта температура – границы пределов и значения для некоторых сплавов

Температура ликвидус нержавеющих сталей варьируется в пределах 1450–1520 оC. У легированных сплавов (на основе железа) она имеет значения примерно от середины этого диапазона и до верхнего его предела в 1520 оC. У никелевых – примерно от середины и до нижнего предела в 1450 оC. Диапазон температур железоникелевых сплавов находится посередине и частично охватывает область значений для легированных и никелевых сплавов.

Так какая она, эта температура – границы пределов и значения для некоторых сплавов
Температура плавления сталей варьируется в пределах 1450–1520 оC

Температуры полного расплавления (ликвидус) для конкретных нержавеющих сплавов можно найти только в некоторых справочниках и статьях интернета. В ГОСТах их нет. И, как указывалось выше, эту температуру невозможно замерить. Ее только рассчитывают для сплава с определенным составом, который согласно стандарта 5632 для одной и той же марки стали может варьироваться в процентном содержании практически всех его элементов. Поэтому те значения температуры, которые указывают какие-либо источники, не являются точными, а лишь приблизительными.

Разница между температурой плавления и кипения

Температурой плавления металлов называют точку перехода твердокристаллического вещества в жидкое состояние. В составе расплава у молекул нет собственного места расположения, они удерживаются за счет силы притяжения, поэтому в разжиженном состоянии сохраняется объем, но теряется форма.

В процессе кипения происходит потеря молекулярного объема, а молекулы вяло взаимодействуют друг с другом, двигаясь хаотично в разных направлениях, отставая от поверхности. Температурой кипения называется процесс, при котором уровень давления металлического пара уравновешивается с давлением внешней среды.

Back To Top