Выбираем датчик уровня воды в резервуаре и емкости. Изготовление ультразвуковых датчиков уровня жидкости своими руками и как подобрать нужный

Выбираем датчики уровня воды в резервуара и емкостях: виды, принцип действия

Выбираем датчики уровня воды в резервуара и емкостях: виды, принцип действия

Конструкция и принцип действия

Конструктивное исполнение измерительных устройств данного типа определяется следующими параметрами:

  • Функциональностью, в зависимости от этого устройства принято делить на сигнализаторы и уровнемеры. Первые отслеживают конкретную точку заполнения резервуара (минимальную или максимальную), вторые осуществляют беспрерывный мониторинг уровня.
  • Принципом действия, в его основу может быть положены: гидростатика, электропроводность, магнетизм, оптика, акустика и т.д. Собственно, это основной параметр, определяющий сферу применения.
  • Методом измерения (контактный или бесконтактный).

Помимо этого, особенности конструкции определяет характер технологической среды. Одно дело — измерять высоту питьевой воды в баке, другое — проверять наполнение резервуаров для промышленных стоков. В последнем случае необходима соответствующая защита.

Датчик и регулятор уровня воды в баке

Датчик уровня воды своими руками схема

Предлагаем собрать простой датчик уровня воды и его контроллер. Как правило такие датчики работают с использованием электрической проводимости воды, так как не всегда получается использовать какой-либо плавающий переключатель. Здесь насос должен начинать качать каждый раз, когда вода достигает слишком низкого уровня, и должен прекращать накачку, когда вода достигает высокого уровня.

Когда вода израсходована, а ее уровень немного ниже высокого уровня, схема должна снова включить насос и выключить его, когда поверхность воды снова коснется электрода, отвечающего за сигнализацию верхнего уровня воды. Этот процесс будет повторяться до тех пор, пока питание не будет отключено.

Поэтому пришлось спроектировать электронную схему, которая была бы надежна и имела длительный срок службы.

Возможности схемы

  1. Поддерживать уровень воды между «высоким» и «низким», то есть между соответствующими электродами, установленными в баке.
  2. Защита насоса, если уровень воды в баке падает ниже уровня, обеспечивающего нормальную его работу.
  3. Использована простейшая схема управления на базе CD4001.

Тут микросхема CD4001 подключена как триггер SR:

А вот как она будет управлять насосом:

Небольшой трансформатор на 220 В переменного тока, понижающий в 12 вольт с силой тока 250 мА подключается к плате источника питания через разъемы X1-1 и X1-2.

Трансформатор обеспечивает низкое напряжение необходимое для питания контроллера и обеспечивает гальваническую развязку между цепью управления и сетью.

Чтобы свести к минимуму количество используемых компонентов, микросхема CD4001 использовалась для создания одного блока питания для обоих компонентов, цепи управления и реле.

Кроме того, контроллер содержит два светодиода, один зеленый — чтобы указать когда насос работает, а другой красный — чтоб сигнализировать когда насос находится в защитном режиме. Зеленый светодиод загорается при каждом включении реле.

Этот LED вместе с токоограничивающим резистором подключен параллельно катушки реле. Если красный светодиод включен, насос с зеленым светодиодом останется выключенным.

Когда красный светодиод гаснет, насос и зеленый светодиод могут включаться при необходимости.

Цепь, состоящая из транзисторов Q1 и Q2, предназначена для включения красного светодиода (защита насоса) каждый раз, когда уровень воды находится между уровнем электрода насоса и электродом, размещенным на дне. Q1 будет закрыт, пока уровень воды остается ниже защитного уровня. Ток базы Q1 слишком мал, менее 1 мкА. Q1 и Q2 собраны по схеме Дарлингтона, поэтому Q2 может активировать красный LED при необходимости.

IC1-B — это логический элемента «И», что означает каждый раз, когда необходимо заполнить резервуар и достичь уровня защиты насоса, он откроет транзистор Q3, который запустит водяной насос.

Список деталей

Резисторы:

  • 3x — 2,2 мОм 1/4 Вт (R1, R2, R3)
  • 1x — 4,7 кОм 1/4 Вт (R4)
  • 1x — 120 кОм 1/4 Вт (R5)
  • 2x — 470 Ом 1/2 Вт (R6, R7)
  • 1x — 15 кОм 1/4 Вт (R8)

Конденсаторы:

  • 1x — 330 мкФ 63 В (С1)
  • 1x — 220 мкФ 25 В (С2)
  • 1x — 1 мкФ 63 В (С3)

Полупроводники:

  • 5x — 1N4004 (D1, D2, D3, D4, D5)
  • 1x — CD4001 (IC1)
  • 1x — 7812T (IC2)
  • 1x — Зеленый светодиод (LED1)
  • 1x — Красный светодиод (LED2)
  • 2x — 2N3904 (Q1, Q3)
  • 1x — 2N3906 (Q2)

Прочее:

  • 1x — реле 12 В (RLY1) Jameco P/N: 144186
  • 4x — 2 клеммных разъема (X1, X2, X3, X4)
  • 1x — 14-контактный разъем для микросхемы
  • 1x — 220 В / 12 В при токе 250 мА адаптер переменного тока.

При сборке сначала припаяйте пассивные компоненты, то есть резисторы и электролитические конденсаторы, обращая внимание на их полярность. Затем припаяйте компоненты блока питания, такие как диоды и стабилизаторы напряжения, также обращая внимание на цоколевку.

Установите 14-контактную панельку на печатной плате, а затем припаяйте ее. Наносите столько припоя, сколько нужно для пайки каждого провода. Слишком большое количество припоя может привести к тому, что отдельные контакты зальются.

Используйте для проверки внешний источник питания постоянного тока +15 В или две 9-вольтовые батареи, соединенные последовательно. Напряжение, измеренное между контактами 14 (Vdd) и 7 (GND), должно составлять +12 В +/- 2%. Если напряжение такое же, как указано выше, можете перейти к следующему шагу.

Установите транзисторы NPN 2N3904 в месте Q1 и Q3 следя за тем, чтобы все контакты вошли в соответствующие отверстия. Тщательно припаяйте каждый вывод. Установите транзистор Q2, то есть 2N3906 PNP, таким же образом.

Установите зеленый светодиод в месте, обозначенном как LED1. Коротким концом является катод. Если светодиод установлен в обратном направлении, он не загорится.

Сделайте то же самое с красным светодиодом, который должен быть установлен в месте, обозначенном как LED2.

Затем установите два двойных разъема. Установите один разъем в месте X1 и один в месте X4, а затем припаяйте их так, чтобы их выходы были обращены к краю печатной платы.

Возьмите два других разъема и затем соедините их вместе, вдавив язычок одного из них в паз на другом.

Такие собранные разъемы должны быть припаяны вместо X2 и X3, так же, как и прежде, обратите внимание, что их выходы направлены к краю платы.

Установите реле RLY1 и припаяйте его. После этого плата контроллера будет готова. Чтобы подготовить устройство к тестированию, поместите интегральную микросхему CD4001 в ранее припаянную панельку.

Поместите собранную печатную плату на непроводящую поверхность, чтобы предотвратить случайное закорачивание точек пайки проводящими ток предметами.

Подключите пару проводов длиной около 30 сантиметров, а затем зачистите их концы.

Вставьте один конец кабеля в разъем на плате контроллера с надписью «Земля», а затем поместите конец другого провода в разъем, описанный как «защита уровня насоса», оставляя другие концы свободными.

Подключите источник питания к схеме. Если блок питания правильно подключен к плате и вся печатная плата собрана без ошибок, должен загореться красный светодиод.

Если соедините два провода вместе, красный светодиод должен погаснуть, а зеленый загореться. Вы также должны услышать тихий щелчок в реле. При размыкании концов кабеля выключится зеленый светодиод, красный светодиод загорится.

Если все работает как описано выше, значит схема была собрана правильно.

Пластиковый контейнер наполните водой. Не отключайте питание от схемы. Красный светодиод должен гореть, а два изолированных провода не должны касаться друг друга. Поместите концы проводов в емкость с водой.

Красный светодиод должен погаснуть, а зеленый загореться. Реле снова издаст тихий звук. Удалите проводники из воды, зеленый светодиод должен погаснуть, а красный загореться.

Если этот тест также был успешным, значит схема работает нормально.

Тест питания

Теперь пришло время протестировать самодельный контроллер с питанием от трансформатора 220 В / 12 В.

Подключите 12 В переменного тока от трансформатора к разъемам на плате контроллера, помеченным как 12 В AC. Подключите первичную обмотку трансформатора с помощью внешнего кабеля к сети.

Схема должна вести себя так же, как при использовании постоянного напряжения. Если это так, можно перейти к следующему тесту.

Имитация работы насоса

Подготовьте другую пару проводов той же длины, что и те, которые уже подключены к плате контроллера, зачистите их и подключите первый провод к клемме «низкий уровень», а второй провод к клемме «высокий уровень».

Когда концы защитного кабеля насоса и «Земля» погружены в емкость с водой, должен гореть зеленый светодиод. Теперь погрузите в тот же контейнер с водой, что и предыдущие кабели с кабелем «низкого уровня».

Зеленый светодиод должен гореть, а затем погрузив провод «высокого уровня» в тот же контейнер с водой, зеленый светодиод должен погаснуть. Это испытание имитировало заполнение резервуара водой через насос.

Чтобы смоделировать сбор воды из контейнера, можете удалить провод «высокого уровня» из контейнера для воды, схема должна вести себя одинаково все время. Теперь удалите кабель низкого уровня из воды. Зеленый светодиод должен гореть, а реле должно включать насос.

Если схема успешно прошла все тесты, то контроллер уровня воды готов к использованию — можете испытывать его на практике. Электроды которые действуют как датчики, должны располагаться вертикально сверху вниз в резервуаре для воды.

Чтобы предотвратить коррозию электродов стоит сделать их из нержавеющего материала (для увеличения срока службы). Если электроды будут проходить через стенку резервуара, обязательно загерметизируйте отверстия, чтобы предотвратить утечку.

Датчик уровня жидкости и емкостной датчик из BLE «маячков» своими руками (II серия)

Тот, кто возьмется за реализацию этого несложного проекта ценой в $1-2 получит опыт создания собственной системы «Умного дома», дополнительный запас знаний в области электроники и главное — удовольствие от проделанной работы. На этот раз постараюсь коротко, но детально. Кто еще не успел ознакомиться с основами BLE (BlueTooth Low Energy) технологий заложенной в маячки, Bluetooth трекеры (антипотеряшки), беспроводные наушники, часы и фитнес браслеты и прочую носимую современную технику может обратиться к первой части сериала — сюда. Там же Вы найдете простейший процесс изготовления датчика протечки воды.

В отличии от предыдущего, где требовалось припаять к маячку лишь два проводка, к нижеописанным датчикам придется найти (отобрать, приобрести, выпаять) дополнительные детали. Для емкостного датчика потребуется сенсорная кнопка TTP223 (ценой — $1 десяток на любой популярной площадке), а для датчика уровня жидкости обойдемся одним транзистором KT361 (цена 3 руб. 100 шт.) или любым другим в компактном корпусе с p-n-p проводимостью.

Сенсорная кнопка:

Транзисторы:

Тип, цена и форма BLE брелков или сэлфи-пультов значения не имеет. Вышеуказанные детали должны уместиться в большинстве антипотеряшках представленных рынком, кроме редких брелков в форме карточек.

Кто-то наверняка задастся вопросом — «а зачем усложнять себе жизнь, когда для детекции уровня жидкостей (чаще всего это вода) вполне может сойти и датчик на двух проводниках описанный ранее?». Конечно можно, но мы же не ищем легких путей, нам подавай совершенство.

В случае с дополнительным тразистором мы не просто получим сигнал тревоги, но и заметно продлим жизнь батарейки, так как в режиме охраны (99,9% времени его работы) датчик будет отключен, в то время как в первом варианте от него требуется постоянная связь.

Принцип работы новой версии датчика основан на эмуляции кнопки I/O. Забегая в перед, замечу, что из-за высокой чувствительности транзисторного переключения на этой основе, можно построить практически весь перечень датчиков охранной сигнализации, в том числе детектора огня, движения, качества воздуха и т.д.

.

Для сопоставимости и наглядности я использовал все тот же белый TrackerPA и причины те же — неудобная схемотехника для изготовления охранных датчиков основанных на разрыве питания, приличный дизайн, относительно хорошая пыле/влагозащита.

Пошагово:

1. Коллектор KT361 транзистора припаиваем к удобному выводу минуса платы (любая из синих точек на фото 3). В моем случае это минус SMD транзистора управления зуммером (точка 1. фото 3).
Фото. 3:

Читайте также:  Почему стабилизатор напряжения постоянно щёлкает

2. Эмиттер KT361 тонким проводком соединяем с управляющим выводом I/O кнопки (точка 2. фото 3).

3. К выводу базы KT361 припаиваем провод потолще аккуратно пакуем и в качества одного из щупов направляем наружу корпуса (точка 4, фото 4). Второй провод (щуп) припаиваем к любой точке с отрицательной полярностью (на фото 3 синие).

Фото. 4:

4. Слегка подрезаем защелку верхней крышки

Фото. 5:

Все — датчик готов к работе.

Еще раз повторюсь — такой принцип подключения приемлем для любого BLE трекера или пульта, поэтому рисовать многочисленные варианты схем для пайки в двух точках (I/O и минус) думаю не целесообразно.

Поскольку все выводы за исключением управляющего (I/O) с максимальным сопротивлением покоя имеют одинаковую отрицательную полярность, ни по току, ни по напряжению утечки в покое практически нет, а вот на выводах (база-земля) с разностью потенциала в 2-3 V обеспечивается высокая чувствительность прибора, которую можно снизить (заодно и возможную утечку через жидкость) включением по любому из выводов постоянного или переменного сопротивления до 1 МОм. Этого можно достичь и разведением концов щупов на расстояние, которое зависит от состава и проводимости контактной среды.

Последовательность срабатывания:

первый контакт с жидкостью – датчик выходит на связь и сохраняет такое положение до второго погружения. Каждый новый контакт переключает состояние датчика.

Если Вам нужно, чтобы датчик при контакте просто выключался, проводок с эмиттера KT361 вместо точки 2 (фото.3) припаиваем к выводу кварцевого резонатора (кристалла, генератора частоты) идущего к процессору, в моем случае к точке 3 (фото.3). После этого включение датчика придется производить вручную.

Те, кто хочет дистанционно контролировать не только протечки и уровень воды, но и горючие жидкости (впрочем, как и любые другие) по одному проводнику без всяких микро гальванических эффектов, переходим к третьему варианту датчиков.

Емкостной датчик (объема)

Датчик получился специфичный, с необычными функциями. Необычность в том, что его реакция не совсем прямолинейна, а работает он по принципу: есть объем – включился, нет объема — сохраняет состояние, выключение происходит при повторном контакте. Датчик как «взрослый» самостоятельно подстраивается под окружающую среду (больше масса покоя — меньше чувствительность, меньше масса — большая чувствительность), но судя по Youtub-у и публикациям, некоторые экспериментаторы считают, что сделать корректный емкостной датчик на основе TTP223 невозможно. Но они ведь не догадываются, что мы будем использовать «умную» базу на Android, которая все вычислит и в нужный момент произведет необходимую для нас действия.
Принцип работы и применения

Емкостные датчики чаще всего используются для контроля влажности твердых и геле образных сред, уровня жидкости, контроля массы тел. Их работа основывается на изменении разницы потенциалов обкладок конденсатора и изменении электро проницаемости окружающей среды. Для нашей кнопки этот эффект выглядит приблизительно так:

Фото 5

При изменении емкости конденсатора С1, который Вы найдете на борту платы схемы (он единственный) в сторону уменьшения – чувствительность датчика увеличится, а увеличив емкость конденсатора чувствительность уменьшится.

Для улучшения радиопередачи, как первый, так и второй вышеописанные наши датчики можно вывести из закрытого пространства (подкухонной тумбочки, стиральной машинки, ванной и т.д.) или другого помещения удлинением проводников. В таком случае, для емкостного датчика с целью уменьшения внешних паразитных полей, которые возникают при непосредственном соседстве с проводниками переменного тока и при проводке щупов через простенки, советую использовать «витую пару». Второй провод припаивается к выходу конденсатора на специально предусмотренную рядом с детекторным проводом площадку (точка 4 фото 8).

Построение датчика:

В этом случае выбор пал на iTAG c такой же как и у TrackerPA неудобной для изготовления других датчиков схемотехникой, но большим внутренним пространством, который хорошо подходит для размещения дополнительной платы. Кроме того, нам потребует двух сантиметровый отрезок тонкого изолированного провода и один (второй по необходимости) жесткий с хорошей изоляцией проводник (щуп — антенна) любой длины.
Фото. 6:

Фото. 7:

Читайте также:  Импульсный паяльник из энергосберегающей лампы своими руками

1. Под выводом GND (точка 2 фото 7) отмечаем место пайки – зачищаем скальпелем небольшую площадку, жирно лудим. Сопоставляем точки как на фото 8, даем припою хорошо прогреться и стечь к контактным площадкам.

Фото. 8:

2. Коротким проводом соединяем управляющий вывод (I/O на фото 9) с управляющим выводом кнопки схемы маячка (точка 3 фото 8).

Фото. 9:

3. Один провод припаиваем к точкам 5 или по необходимости создаем витую пару. Провода выводим проделав (расширив) отверстия за пределы корпуса.

Вставляем аккумулятор и датчик готов к работе

.

Короткое видио:

В случае его использования для контроля уровня агрессивных жидкостей, концы проводов (щупы) можно изолировать клеем (лаком) или подогнуть так, чтобы металл в проводнике не соприкасался с жидкостью.

Подойдет датчик и для незаметного включения/выключения нашей охранной сигнализации. Сам датчик внутри помещения, а снаружи двери кончик щупа (коснулись — включилась, еще раз коснулись выключилась). Если обеспечить хороший контакт щупа с ручкой двери, любое соприкосновение с ручкой человека даст сигнал на базу, что будет еще одним барьером к несанкционированному проникновению в жилище. При желании можно организовать сенсорное беспроводное управление любыми домашними приборами. Но это уже другая история.

Емкостной датчик, как и датчик уровня жидкости в режиме охраны постоянно выключен. Естественно иногда датчик нужно будет проверять на взаимосвязь с базой. В нашем случае это можно делать 1-2 раза в год легким касанием щупов. Если же кто-то предпочитает постоянный и дистанционный мониторинг датчиков на связь и степень заряда батарейки, то датчики на охрану выставляем в рабочем состоянии, но тогда и расход заряда батарейки выше (до 1,5 лет).

Для нетерпеливых

Некоторые, наверное уже заметили и задались вопросом — «как должна реагировать база, когда датчики на одно и тоже действие могут находиться как в включенном, так и в выключенном состоянии?».
Нет, мы не станем мониторить состояние связи встроенными в Macrodroid средствами для BLE маячков и даже не станем искать и настраивать специализированные плагины от Tasker (не каждый сможет правильно определить и вписать UUIDs или MAC адреса) и уж тем более, мы не станем писать собственные скетчи и программы на Java, Puthon, XML, С+…. Ведь мы рассчитываем на то, что построение собственной охранной системы будет доступно любому кто получил базовое школьное образование и не боится припаять пару проводков.

Так вот, если помните в первой серии я указывал на «эксклюзивную» возможность программы iTAG One (Ключница) быстро выводить в уведомления состояние каждого датчика. Их мы и будем отслеживать точнее это будет делать Macrodroid.

Я нашел еще одно преимущество этой программы — возможность удвоить количество мониторируемых датчиков. В стандарте iTAG One позволяет одновременно подключать только четыре маячка. А если много окон и еще пару входных дверей и датчиков протечек? Выход — найти и загрузить старую версию программы к примеру (1.0-beta). Что удивительно, но она не конфликтует с версиями 2.09beta и новой 5.1.1. В результате мы получим контроль сразу над 8-ю датчиками.

Пошагово:

В триггеры Macrodroid добавляем «Уведомление получено» и/или «Уведомление очищено», в настройках триггера указываем с какого приложения получить эти уведомления и что они должны содержать — к примеру слово «ДВЕРИ». В закладке «Действия» прописываем, все что мы хотим от базы. Macrodroidпостоянно мониторирует все происходящее, увидев уведомление с конкретным текстом от «ключницы», немедленно отреагирует — позвонит, отправит СМС, проиграет выбранную вами музыку, отправит через Wi-fi команду внешним приемным устройствам и многое другое.

Подробное описание и принципы настройки базы Вы найдете в последнем выпуске сериала, а в следующем (если Вам понравится и этот материал) постараюсь описать в деталях изготовление охранных датчиков окон с «вечной батарейкой» и дверей.

А пока представляю на обсуждение под катом фото-идею для «узких специалистов».

Жмем:

Всем ДОБРА!


Указатель уровня воды своими руками

Схема указателя уровня воды.

Схема очень простая, но работает прекрасно. В конце статьи будет видео, где наглядно показана работа этого указателя уровня воды, который мы сделаем вместе с вами. Для начала работы соберём детали, которые нам потребуются для изготовления устройства.

Детали для изготовления схемы указателя уровня воды.

Нам понадобится: Микросхема ULN2004 или ей подобная, контактная площадка для установки микросхемы на плату. При наличии такой площадки отсутствует риск перегреть ножки микросхемы паяльником или повредить её внутреннее устройство статическим электричеством. Да и ремонт схемы, при необходимости, сокращается до нескольких секунд. Достаточно вынуть из гнезда горелую микросхему и вставить на её место новую. Сплошная выгода, особенно для не очень опытных радиолюбителей. Резисторы R1 – R7 – 47Kom. R8 – R14 – 1Kom. Светодиоды любого цвета по вашему выбору, диаметром 3 – 5 мм. Конденсатор 100Mkf 25v. Клеммные колодки любого типа, а можно и вообще без них, но удобство пользования устройством несколько снизится. Макетная плата любая, лишь бы все компоненты влезли. Я пользуюсь такими платами, потому что не хочется заморачиваться на изготовление печатной платы, просто так мне удобнее и более привычно.

Правильный выбор датчика уровня

Чтобы правильно выбрать датчик уровня воды в баке, рекомендуется обратить внимание на его ключевые характеристики:

  • Каковы конструктивные особенности и назначение прибора, типы веществ, для которых он предназначается.
  • Оказывает ли влияние тип материала, из которого изготовлен прибор, на конечные показатели замера.
  • Какие схемы преобразования сигналов предусмотрены для эффективной эксплуатации прибора.
  • Обеспечивается ли точность получаемых результатов при быстром изменении уровня жидкости.
  • Стандартна ли комплектация прибора, имеются ли вспомогательные элементы и указатели для изменения заданных настроек и параметров.
  • Какова восприимчивость прибора к внешнему воздействию – вибрациям, электромагнитным излучениям.
  • Имеется ли сертификация продукции согласно государственным стандартам.
  • Какие гарантийные обязательства даны от производителя или продавца.

Читать также: Роликовый нож для листового металла своими руками

Как подобрать нужный

При выборе ультразвукового измерителя уровня необходимо учитывать:

  • свойства жидкости;
  • материал, из которого изготовлен резервуар, его влияние на точность измерений;
  • используемую схему обработки измерительной информации;
  • оснащение сенсора дисплеем для отображения данных и изменения настроек;
  • наличие сертификатов;
  • влияние перепадов температуры и иных внешних факторов на точность измерения;
  • материал, из которого устройство выполнено.

ультразвуковой измеритель

Вещества

Большое преимущество ультразвуковых датчиков уровня – точность измерения не зависит от физико-химических свойств жидкости: плотности, химической активности, электропроводимости и др. Прибор будет работать с водой, с молоком, с серной кислотой, нефтью. Однако в некоторых случаях они не применяются:

  • для контроля уровня кипящих жидкостей. Образующиеся при кипении воздушные пузыри имеют отличные от жидкости параметры отражения акустических волн – результаты измерений искажается;
  • при образовании на поверхности жидкости пены, которая рассеивает и поглощает ультразвуковой сигнал;
  • при контроле жидкостей, требующих постоянного перемешивания. Образующиеся при этом кавитация и вихреобразные воронки искажают отраженный сигнал, и точность измерений снижается.

ультразвуковой датчик уровня

Материал резервуара

Материал резервуара, внутри которого установлен акустический датчик, не влияет на точность измерений прибора. Наиболее сильный отраженный сигнал приходит от границы сред, а вторичное эхо от стен емкости слабое и откалиброванным прибором не улавливается.

Когда в силу технологических факторов, соблюдения мер безопасности и т. д., датчик внутрь емкости установить нельзя, для измерения уровня жидкости используется метод многократного отражения звуковых колебаний от внутренних стенок. Метод подразумевает установку сенсора снаружи. Измерения возможны, если резервуар изготовлен из металла, стекловолокна, стекла, пластика. Эти материалы хорошо отражают ультразвук, поэтому измерение уровня будет точным.

Многие сорта пластмасс, пористая резина и т. п. имеют близкие к жидкостям характеристики отражения ультразвуковых сигналов.

Если емкость изготовлена из этих материалов, применять наружный акустический датчик уровня жидкости нельзя, так как результаты измерений будут некорректными.

Резервуар

Схема обработки сигнала

Получаемый от датчика сигнал обрабатывается несколькими способами:

  1. Используется встроенный электронный блок для обработки данных, получаемых при измерениях. Информация отображается в цифровом или графическом виде на дисплее. Схема не предусматривает включение прибора в телеметрическую цепь управления и предназначена для информирования оператора об уровне жидкости в обследуемом резервуаре. Используется в переносных ультразвуковых уровнемерах для мониторинга жидкостей в герметичных емкостях.
  2. Полученный аналоговый сигнал преобразуется в цифровой прибором или дополнительным оборудованием. Получаемый сигнал передается на централизованный пульт управления. Прибор включается в единую сеть автоматического управления;
  3. Сигнализаторов контрольных точек используется как реле. При достижении жидкостью минимального запрограммированного уровня, датчик формирует сигнал, который в соответствии с заданной программой включает световую и звуковую сигнализацию, насос и т. п. Когда жидкость поднимется до следующей контрольной точки, датчик формирует команду на отключение сигнализации или насоса.

Схема обработки сигнала

Наличие дисплея в комплектации

ЖК- дисплей отображает информацию о проводимых датчиком измерениях в реальном времени. Распространены 2 типа:

  • цифровой. Отображает цифровые значения измерений и простые статические графические изображения;
  • графический. Строит динамические графические изображения.

На дисплее отображается изменение уровня жидкости в виде динамической пиктограммы емкости. На экран выводится другая информация, получаемая сенсором: температура жидкости и газовой среды, давление, плотность и т.д.

С дисплеем удобно перепрограммировать прибор: последовательность шагов отображается на экране, подсвечиваются ошибки, выводится информация об успешном завершении процесса.

Промышленные образцы редко комплектуются дисплеями, так как рассчитаны на включение в единую систему управления.

ЖК- дисплей

Сертификаты на продукцию

Сертификация ультразвукового измерителя уровня – процедура, подтверждающая его соответствие определенным стандартам, подтверждаемая выдаваемыми свидетельствами:

  • сертификат соответствия требованиям Таможенного союза, которым подтверждается выполнение требований к продукции, установленных в технических регламентах Таможенного союза. Наиболее распространенный сертификат, так как для большинства групп продукции технические регламенты приняты и действуют;
  • сертификат соответствия ГОСТ Р – подтверждение проверки изделия компетентной организацией, в ходе которой доказано его соответствие международным и национальным стандартам, техническим условия, стандартам организаций. На ультразвуковые измерители уровня оформляется добровольный сертификат ГОСТ Р, так они не входят в перечень продукции, подлежащей обязательной сертификации, который утвержден Постановлением Правительства РФ от 01.12.2009 № 982;
  • сертификат взрывозащиты. Подтверждает соответствие изделий требованиям ТР ТС 012/2011 «О безопасности оборудования для работы во взрывоопасных средах» и возможность работы измерительных приборов во взрывоопасных средах.

Сертификация ультразвукового измерителя уровня

Реакция датчиков уровня на перепады температуры

Скорость звука в воздухе растет с увеличением температуры. Для устранения ошибок в измерениях промышленные уровнемеры снабжаются термодатчиком. Показатели температуры учитываются микропроцессором сенсора при расчете скорости прохождения ультразвуковых волн.

Формула зависимости скорости звука в воздухе от температуры, полученная опытным путем:

Читайте также:  Инструкция по изготовлению намоточного станка

С = С0 + 0,59*t°,

где С – скорость звука при измеренной температуре, С0 – скорость звука при температуре 0С°, t° — температура, измеренная термодатчиком, 0,59 – коэффициент, полученный на основании опытных измерений.

Если в сенсоре не предусмотрена автоматическая корректировка результатов измерений в зависимости от температуры, она проводиться вручную при каждом значительном перепаде температуры. В противном случае прибор будет показывать неправильные значения уровня жидкости.

Реакция датчиков уровня на перепады температуры

Влияние внешних факторов на работу

Кроме температуры газовой среды над жидкостью, на точность работы датчика влияют внешние факторы:

  • давление газовой среды. При его изменении скорость меняется, и датчик показывает неправильные значения;
  • сильная запыленность может нарушить работу измерителя;
  • из-за высокой влажности меняется скорость прохождения звуковых волн. Прибор покажет некорректные данные.

Расчет необходимых поправок в работу датчика – сложная задача. Над поверхностью жидкости создается газовая среда, насыщенная парами жидкости. Его физические свойства отличаются от характеристик атмосферного воздуха, который служил эталоном для калибровки приборов.

Для упрощения задачи часто применяются реперы – отражающие элементы, расположенные на строго фиксированных расстояниях от излучателя. Засекая время прохождения сигнала до репера и обратно, высчитывается скорость звука в газовой среде. Это значение используется для расчета уровня жидкости.

Наличие реперов усложняет и удорожает монтаж и эксплуатацию датчиков уровня.

Датчик

↑ Монтаж датчика

Датчик, я установил в корпус от елочной гирлянды.

Корпус закрепил на крышке бака.

Просверлил отверстия для установки датчика.

Припаял кабель, электролитический конденсатор и залил все термоклеем.

Особенности применения

Использование ультразвуковых измерителей имеет ряд особенностей. Например, для устранения ошибок измерений необходимо следовать алгоритму:

  • проводить и калибровку прибора при изменении состава газовой среды для установления фактической скорости звука;
  • проводить калибровку при каждом существенном изменении температуры, записывая значения скорости;
  • в дальнейшей работе прибора при перепадах температуры калибровку не проводить, а пользоваться ранее записанными показателями скорости.

Процесс настройки сенсора достаточно трудоемок. Возможна ситуация, когда изменения газовой среды в резервуаре не связаны с изменением температуры. В данном случае придется повторно проводить калибровку прибора.

Общие принципы размещения датчиков протечки

Любой владелец помещения (жилого или офисного) знает, где проходят коммуникации водоснабжения или отопления. Потенциальных мест протечки не так много:

  • запорные краны, смесители;
  • соединительные муфты, тройники (особенно это касается пропиленовых труб, которые соединяются методом пайки);
  • вводные патрубки и фланцы бачка унитаза, стиральной или посудомоечной машины, гибкие шланги кухонных смесителей;
  • места подключения приборов учета (счетчиков воды);
  • радиаторы отопления (могут протекать как по всей поверхности, так и в местах соединения с магистралью).

Сигнализатор уровня воды своими руками схема

Разумеется, в идеале, датчики должны быть расположены именно под этими устройствами. Но тогда их может быть слишком много, даже для варианта самостоятельного изготовления.

На самом деле, достаточно 1–2 датчиков на потенциально опасное помещение. Если это ванная комната, или туалет — как правило, имеется порожек входной двери. В этом случае, вода набирается, как в поддон, слой может достигать 1–2 см, пока жидкость не прольется через порог. В этом случае, место установки не критично, главное, чтобы датчик не мешал передвигаться по комнате.

На кухне датчики устанавливаются на пол под раковиной, за стиральной или посудомоечной машиной. Если возникнет протечка, она сначала образует лужицу, в которой и сработает сигнализация.

В остальных помещениях прибор устанавливается под радиаторами отопления, поскольку через спальню или гостиную трубы водоснабжения не прокладываются.

Не лишним будет установка датчика в нишу, по которой проходят стояки трубопроводов и канализации.

Наиболее критичные точки прорыва воды

При равномерном рабочем давлении, риск протечки минимален. Тоже самое относится к смесителям и кранам, если вы открываете (закрываете) воду плавно. Слабое место системы трубопроводов проявляет себя при гидроударах:

  • клапан подачи воды в стиральную машину при запирании создает давление, в 2–3 раза превышающее номинал водопровода;
  • то же самое, но в меньшей степени, относится к запирающей арматуре бачка унитаза;
  • радиаторы отопления (а также места их подключения к системе) зачастую не выдерживают тестовую опрессовку, которую проводят предприятия теплоснабжения.

Как правильно размещать датчики

Контактная пластина должна располагаться как можно ближе к поверхности пола, не касаясь его. Оптимальная дистанция: 2–3 мм. Если контакты разместить непосредственно на полу, будут возникать постоянные ложные срабатывания из-за конденсата. Большое расстояние снижает эффективность защиты. 20–30 миллиметров воды, это уже проблема. Чем раньше сработает датчик, тем меньше потери.

Вне зависимости от того, приобретается система защиты от протечек в магазине, или изготавливается своими руками, надо знать единые стандарты ее работы.

Как изготовить своими руками

Для создания простейшего измерителя уровня понадобится ультразвуковой модуль HC-SR04 и микроконтроллер 8051.  Устройство позволяет контролировать уровень жидкости в резервуаре глубиной до 2 метров. Для работы устройства нужно изолировать НС-SR04 от попадания влаги.

HC-SR04 устанавливается в верхней части резервуара, излучателем в сторону жидкости. Ультразвуковые колебания, излучаемые модулем, отражаются от поверхности воды. Приемник принимает эхо-сигнал, высчитывает задержку времени и передает сформированный сигнал о результатах измерений микроконтроллеру.

Микроконтроллер считывает сигнал и вычисляет расстояние.

При введении необходимой программы микроконтроллер будет включать насос, когда уровень воды опустится до минимального заданного значения, и выключать его при достижении максимального уровня.

Виды датчиков уровня

В зависимости от принципа действия, сигнализаторы принято делить на следующие виды:

  • поплавочного типа;
  • использующие ультразвуковые волны;
  • устройства с емкостным принципом определения уровня;
  • электродные;
  • радарного типа;
  • работающие по гидростатическому принципу.

Поскольку эти типы наиболее распространены, рассмотрим каждый из них в отдельности.

Поплавковый

Это наиболее простой, но, тем не менее, действенный и надежный способ измерения жидкости в баке или другой емкости. С примером реализации можно ознакомиться на рисунке 2.

Поплавковый датчик для управления насосом
Рис. 2. Поплавковый датчик для управления насосом

Конструкция состоит из поплавка с магнитом и двух герконов, установленных в контрольных точках. Кратко опишем принцип действия:

  • Емкость опустошается до критического минимума (А на рис. 2), при этом поплавок опускается до уровня, где расположен геркон 2, он включает реле, подающее питание на насос, закачивающий воду из скважины.
  • Вода доходит до максимальной отметки, поплавок поднимается до места расположения геркона 1, он срабатывает и реле отключается, соответственно, двигатель насоса прекращает работать.

Такой герконовый сигнализатор сделать самостоятельно довольно просто, а его настройка сводится к установке уровней включения-выключения.

Заметим, что если правильно выбрать материал для поплавка, датчик уровня воды будет работать, даже при наличии слоя пены в резервуаре.

Ультразвуковой

Этот тип измерителей может использоваться как для жидкой, так и сухой среды, при этом у него может быть аналоговый или дискретный выход. То есть, датчик может ограничивать заполнение по достижению определенной точки или отслеживать его постоянно. Устройство включает в себя ультразвуковой излучатель, приемник и контроллер обработки сигнала. Принцип работы сигнализатора продемонстрирован на рисунке 3.

Принцип работы ультразвукового датчика уровня
Рис. 3. Принцип работы ультразвукового датчика уровня

Работает система следующим образом:

  • излучается ультразвуковой импульс;
  • принимается отраженный сигнал;
  • анализируется длительность затухания сигнала. Если бак полный, она будет короткой (А рис. 3), а по мере опустошения начнет увеличиваться (В рис. 3).

Ультразвуковой сигнализатор бесконтактный и беспроводной, поэтому он может использоваться даже в агрессивных и взрывоопасных средах. После первичной настройки, такой датчик не требует никакого специализированного обслуживания, а отсутствие подвижных частей существенно продлевает срок эксплуатации.

Электродный

Электродные (кондуктометрические) сигнализаторы позволяют контролировать один или несколько уровней электропроводящей среды (то есть, для измерения наполнения бака дистиллированной водой они не подходят). Пример использования устройства приведен на рисунке 4.

Измерение уровня жидкости кондуктометрическими датчиками
Рисунок 4. Измерение уровня жидкости кондуктометрическими датчиками

В приведенном примере задействован трехуровневый сигнализатор, в котором два электрода контролируют заполнение емкости, а третий является аварийным, для включения режима интенсивной откачки.

Емкостной

При помощи этих сигнализаторов можно определять максимальное заполнение емкости, причем, в качестве технологической среды могут выступать как жидкость, так и сыпучие вещества смешанного состава (см. рис. 5).

Емкостной датчик уровня
Рис. 5. Емкостной датчик уровня

Принцип работы сигнализатора такой же, как у конденсатора: проводится измерение емкости между пластинами чувствительного элемента. Когда она достигнет порогового значения, подается сигнал на контроллер. В некоторых случаях задействовано исполнение «сухой контакт», то есть уровнемер работает через стенку бака в изоляции от технологической среды.

Данные устройства могут функционировать в широком температурном диапазоне, на них не влияют электромагнитные поля, а срабатывание возможно на большом расстоянии. Такие характеристики существенно расширяют сферу применения вплоть до тяжелых условий эксплуатации.

Радарный

Этот вид сигнализаторов можно действительно назвать универсальным, поскольку он может работать с любой технологической средой, включая агрессивную и взрывоопасную, причем, давление и температура не будут влиять на показания. Пример работы устройства приведен на рисунке ниже.

Измерение уровня радарным датчиком
Измерение уровня радарным датчиком

Устройство излучает радиоволны в узком диапазоне (несколько гигагерц), приемник ловит отраженный сигнал и по времени его задержки определяет наполняемость емкости. На измеряющий датчик не влияет давление, температура или характер технологической среды. Запыленность также не отражается на показаниях, чего не скажешь о лазерных сигнализаторах. Также необходимо отметить высокую точность приборов данного типа, их погрешность составляет не более одного миллиметра.

Гидростатический

Эти сигнализаторы могут измерять как предельное, так и текущее заполнение резервуаров. Их принцип действия продемонстрирован на рисунке 7.

Измерение заполнения гиростатическим датчиком
Рисунок 7. Измерение заполнения гиростатическим датчиком

Устройство построено по принципу измерения уровня давления, произведенного столбом жидкости. Приемлемая точность и небольшая стоимость сделали данный вид довольно популярным.

В рамках статьи мы не можем осмотреть все типы сигнализаторов, например, ротационно-флажковых, для определения сыпучих веществ (идет сигнал, когда лепесток вентилятора застрянет в сыпучей среде, предварительно вырыв приямок). Так же нет смысла рассматривать принцип действия радиоизотопных измерителей, тем более рекомендовать их для проверки уровня питьевой воды.

Схема соединений

Все детали нужно собрать соответственно диаграмме выше. Сразу заметим, что в данной схеме на макетную плату размещается микроконтроллер ATmega328. Если вы используете плату Arduino, вы можете просто установить соединения для светодиодов и ультразвукового датчика.

Как выбрать?

Выбор датчика уровня воды в резервуаре зависит от многих факторов, основные из них:

  • Состав жидкости. В зависимости от содержания в воде посторонних примесей может меняться плотность и электропроводность раствора, что с большой вероятностью отразится на показаниях.
  • Объем резервуара и материал, из которого он изготовлен.
  • Функциональное назначение емкости для накопления жидкости.
  • Необходимость контролировать минимальный и максимальный уровень, или требуется мониторинг текущего состояния.
  • Допустимость интеграции в систему автоматизированного управления.
  • Коммутационные возможности устройства.

Это далеко не полный список для выбора измерительных приборов данного типа. Естественно, что для бытового назначения можно существенно сократить критерии отбора, ограничив их объемом резервуара, типом срабатывания и схемой управления. Существенное сокращение требований делает возможным самостоятельное изготовление подобного устройства.

Основные разновидности приборов

Датчики контроля уровня воды классифицируются в соответствии с их назначением. Устройства применяются для решения следующих задач:

Читайте также:  Разница между лампой накаливания и лампой люминесцентной

  • контроля над изменением уровня жидкости в емкости и сигнализации при превышении допустимого значения;
  • запуска сигнализирующего звукового или светового реле в центральном управляющем блоке;
  • передачи замеров на дисплей блока управления с определением используемых емкостей;
  • поддержания замкнутого цикла контроля над уровнем жидкости в емкости при помощи контроллера и электрического насосного двигателя.

Датчики уровня воды своими руками

По конструктивным особенностям прибор бывает:

  • Бесконтактного типа. Подобные устройства применяются для веществ в вязкой, сыпучей, жидкой или твердой форме. К этой категории относятся дискретные и ультразвуковые датчики.
  • Контактного типа. Устройства, предназначенные для установки в резервуаре на внутренней стенке на соответствующей высоте. При достижении водой установленной отметки происходит активация прибора с передачей сигнала. В этой категории представлены поплавковые и гидростатические датчики.

По механизму воздействия регулятор уровня воды в баке бывает:

  • поплавковым;
  • гидростатическим;
  • дискретным;
  • радарным;
  • ультразвуковым.

Back To Top