Трехфазный двигатель в однофазной сети: 3 схемы

Трехфазный двигатель в однофазной сети: 3 схемы

Трехфазный асинхронный двигатель: на что обратить внимание до его подключения

За небольшим исключением асинхронник нам достается в неизвестном состоянии. Очень редко на него есть свидетельство о проверке и заверенная гарантия от электролаборатории.

Даже в этом случае я рекомендую убедиться в его исправности лично.

Механическое состояние статора и ротора: что может мешать работе двигателя

Неподвижный статор состоит из трех частей: среднего корпуса и двух боковых крышек, стянутых шпильками. Обращайте внимание на зазор между ними, усилие стягивания гайками.

Асинхронный двигатель

Корпус должен быть плотно сжат. Внутри него на подшипниках вращается ротор. Попробуйте покрутить его от руки. Оцените приложенное усилие: как работают подшипники, нет ли биений.

Без должного опыта мелкие дефекты таким способом не выявить, но случай грубого заклинивания сразу проявится. Послушайте шумы: нет ли при вращении задевания ротором элементов статора.

После включения двигателя на холостой ход и непродолжительной работы еще раз послушайте звуки вращающихся частей.

В идеале лучше разобрать статор, оценить визуально его состояние, промыть загрязненные подшипники ротора и полностью заменить их смазку.

Подшипники ротора

Электрические характеристики статорных обмоток: как проверять схему сборки

Все основные параметры электродвигателя производитель указывает на специальной табличке, прикрепленной к корпусу статора.

Характеристики электродвигателя

Этим заводским характеристикам можно верить только в том случае, если вы уверены, что после завода никто из электриков не изменил схему подключения обмоток и не сделал непроизвольных ошибок. А случаи такие мне попадались.

Да и сама табличка со временем может стереться или потеряться. Поэтому предлагаю разобраться с технологией раскрутки ротора.

Для понимания электротехнических процессов, протекающих внутри статора двигателя, удобно представить его в виде обыкновенного тороидального трансформатора, когда на кольцевом сердечнике магнитопроводе симметрично расположены три равнозначные обмотки.

Схема статора собрана внутри закрытого корпуса, из которого выведены только шесть концов обмоток.

Схема статора

Они маркируются и подключаются на закрытом крышкой клеммнике для сборки по схеме звезды или треугольника типовой перестановкой перемычек.

Схема подключения обмоток

На правой части картинки показана сборка треугольника. Схему расположения перемычек для звезды публикую ниже.

Схема звезды

Электрические методики проверки схемы сборки обмоток

Но не все так однозначно, как может показаться на первый взгляд. Существует целый ряд двигателей с отклонением от этих правил.

Например, производитель может выпускать электродвигатели не универсального использования, а для работы в конкретных условиях с подключением обмоток по схеме звезды.

В этом случае он может собрать три конца обмоток внутри корпуса статора, а наружу вывести только четыре провода для подключения к потенциалам фаз и нуля.

Монтаж этих концов обычно выполняется в районе задней крышки. Для переключения обмоток на треугольник потребуется вскрывать корпус и делать дополнительные выводы.

Это не сложная работа. Но она требует бережного обращения с лаковым покрытием медного провода. При изгибах проволоки возможно его повреждение, что повлечет нарушение изоляции и создаст межвитковое замыкание.

После перемонтажа схемы рекомендую дополнительно покрывать внешние слои обмоток лаком, а затем хорошо просушить их до окончательной сборки теплым воздухом.

Что делать, если маркировка выводов отсутствует

На старом асинхронном двигателе провода могут быть сняты с клемм, а заводская маркировка утеряна. Попадались и такие экземпляры, когда из корпуса просто торчали наружу шесть концов. Их необходимо вызвонить и промаркировать.

Работу выполняем в два этапа:

  1. Проверяем принадлежность концов обмоткам.
  2. Определяем и маркируем каждый вывод.

На первом этапе работаем мультиметром или тестером в режиме омметра. Ставим первый щуп произвольно на один вывод, а вторым — ищем из пяти оставшихся проводов тот, где прибор покажет закороченную цепь. Помечаем оба конца, как принадлежащие к одной обмотке.

Как прозвонить обмотки

С оставшимися четырьмя выводами поступаем аналогично. В итоге мы получаем три пары проводов от каждой обмотки.

Как найти конец и начало обмотки: 2 способа

Можно вести поиск с помощью вольтметра:

  1. и батарейки;
  2. или источника пониженного переменного напряжения.

Первый метод основан на том, что импульс тока, поданный на одну из трех обмоток, трансформируется в двух остальных.

Для этого на произвольно выбранный конец К1 подключают минус батарейки, а плюсовым контактом кратковременно касаются второго вывода. По цепи проходит импульсный бросок тока и наводит ЭДС в двух других обмотках.

Как найти конец и начало обмотки

С помощью вольтметра постоянного тока по отклонению стрелки проверяется полярность наведенного напряжения в каждой обмотке. Началом помечается тот вывод, который соответствует положительному потенциалу (стрелка прибора движется вправо при замыкании и влево при размыкании цепи батарейкой).

После маркировки концов рекомендую сделать контрольную проверку правильности их нанесения подачей импульса на другую обмотку.

Второй способ основан на использовании источника переменного напряжения безопасной величины 12-36 вольт.

Начало и конец обмоток

Концы двух любых обмоток замыкают в параллель и на них подключают вольтметр. На оставшуюся третью обмотку подают переменное напряжение и смотрят на показание прибора.

Если наведенная ЭДС соответствует поданному напряжению, то эти две обмотки включены в одной полярности. Одинаково помечают их начала и концы. При нулевом показании вольтметра концы одной из обмоток необходимо вывернуть и сделать повторный замер.

Затем одну из промаркированных обмоток, например №3, соединяют с первой и подключают к ним вольтметр. На освободившуюся №2 снова подают переменное напряжение. По величине ЭДС на вольтметре судят о полярности выводов.

После окончания маркировки делают контрольный замер для проверки выполненной работы.

Когда нет под рукой понижающего трансформатора или безопасного блока питания, то опытный электрик с правом самостоятельной работы под напряжением, может воспользоваться обыкновенной лампой накаливания ватт на 60.

Ее используют в качестве делителя напряжения, подключая последовательно к одной обмотке электродвигателя. На собранную цепочку подают 220 вольт, а на двух других измеряют напряжение вольтметром.

Такая проверка опасна. Ею не стоит заниматься необученным людям: можно легко получить электрическую травму.

Как оценить состояние изоляции обмоток

Отдельная часть блогеров умалчивает о необходимости этой проверки. Они считают, что без нее можно обойтись в большинстве случаев.

Проверка изоляции

Однако до включения двигателя под напряжение я рекомендую:

  • взять мегаомметр с выходным напряжением на 1000 вольт;
  • проверить им изоляцию между каждой отдельной обмоткой и корпусом, а также между всеми обмотками;
  • если она выше 0,5 Мом, то считать стартер исправным. В противном случае придется его ремонтировать. Довольно часто помогает просушка сухим и теплым воздухом.

Проверку изоляции электродвигателя мегаомметром необходимо обязательно проводить до его подключения под нагрузку. Однако она не способна выявить повреждения диэлектрического слоя, вызывающие межвитковые замыкания обмотки.

При сборке двигателя каждая катушка статора мотается медным проводом одной длины и сечения. Поэтому все они имеют строго одинаковое резистивное сопротивление.

Если в обмотке возникло межвитковое замыкание, то его, как правило, можно определить замером мультиметра в режиме омметра. Для этого внимательно анализируйте и сравнивайте активные сопротивления каждой цепочки.

Как проверяют магнитное поле статора на заводе

При подаче напряжения на исправный электродвигатель создается вращающееся магнитное поле. Его визуально оценивают с помощью металлического шарика, который повторяет вращение.

Проверка статора

Я не призываю вас повторять такой опыт. Пример этот призван помочь понять, что работа асинхронного двигателя основана на взаимодействии магнитных полей статора и ротора.

Только правильное подключение обмоток обеспечивает вращение шарика или ротора.

Мощность электродвигателя и диаметр провода обмотки

Это две взаимосвязанных величины потому, что поперечное сечение проводника выбирается по способности противостоять нагреву от протекающего по нему току.

Чем толще провод, тем большую мощность можно передавать по нему с допустимым нагревом.

Если на двигателе отсутствует табличка, то о его мощности можно судить по двум признакам:

  1. Диаметру провода обмотки.
  2. Габаритам сердечника магнитопровода.

После вскрытия крышки статора проанализируйте их визуально.

Как подключить трехфазный электродвигатель в сеть 220 В?

Рассмотрим самый простой способ подключения трехфазного асинхронного двигателя в бытовую сеть. Для этого потребуется набор ручных инструментов, конденсатор, а также минимальные знания электротехники и мультиметр.

Итак, пошаговое руководство по подключению:

  1. Раскручиваем блок управления двигателя и смотрим схему подключения. Если применен метод звезды, необходимо перекрутить коммутацию на треугольник.
  2. Подсоединение производят только с одной стороны выводов обмоток. Для удобства обозначим их от 1 до 3.
  3. На 1-ый и 2-ой вывод подсоединяем конденсатор.
  4. На 1-ый и 3-ий вывод заводим провода питания 220В. При этом вывод 2 не трогаем. На нем остается только конденсатор.
  5. Включаем провод питания в сеть и проверяем работу двигателя.

ВАЖНО: Расчет мощности конденсатора производят по формуле: на 100Вт /10 мкФ.

Данный способ очень прост и безопасен. Перед подсоединением конденсатора и предварительным пуском двигателя, стоит проверить целостность контура проводки на пробитие по корпусу. Это можно сделать при помощи мультиметра.

Как видно, схема довольно проста. Подключение не займет много времени и потребует минимум усилий. Есть и другие схемы подсоединения трехфазного двигателя в обычную сеть. Рассмотрим и их.

ИНФОРМАЦИЯ: К сожалению не все трехфазные двигатели хорошо работают от бытовой сети. Некоторые могут попросту перегореть. К таким относятся моторы с двойной клеткой короткозамкнутого ротора (серия МА). Для использования трехфазных моторов в бытовой сети лучше использовать двигатели серии АО2, АПН, УАД, А, АО.

Подключение трехфазного двигателя к однофазной сети по схеме звезды

Начну с предупреждения: даже опытные электрики во время работы допускают ошибки, которые называются «человеческий фактор». Что уж говорить про домашних мастеров…

Поэтому рекомендую в обязательном порядке подачу напряжения на собранную схему выполнять только через отдельный автоматический выключатель SF, правильно подобранный по нагрузке. Он спасет жизнь и здоровье.

Схема подключения звезды показана на картинке.

Схема подключения звезды

Концы обмоток собраны в одну точку горизонтальными перемычками внутри клеммной коробки. На нее никакие внешние провода не подключены.

Фаза (через автоматический выключатель) и ноль бытовой проводки подаются на две разные клеммы начал обмоток. К свободной клемме (на рисунке Н2) подключена параллельная цепочка из двух конденсаторов: Cp — рабочий, Сп — пусковой.

Рабочий конденсатор соединен второй обкладкой жестко с фазным проводом, а пусковой — через дополнительный выключатель SA.

При запуске электродвигателя ротор необходимо раскрутить из состояния покоя. Он преодолевает усилия трения подшипников, противодействия среды. На этот период требуется повысить величину магнитного потока статора.

Делается это за счет увеличения тока через дополнительную цепочку пускового конденсатора. После выхода ротора на рабочий режим его нужно отключить. Иначе пусковой ток перегреет обмотку двигателя.

Выполнять отключение цепочки пуска простым переключателем не всегда удобно. Для автоматизации этого процесса используют схемы с реле или пускателями, работающими по времени.

Среди мастеров самодельщиков пользуется популярностью кнопка пуска от советских стиральных машин активаторного типа. У нее встроено два контакта, один из которых после включения отключается автоматически с задержкой: то, что надо в нашем случае.

Если приглядитесь внимательно на принцип подачи однофазного напряжения, то увидите, что 220 вольт приложены к двум последовательно подключенным обмоткам. Их общее электрическое сопротивление складывается, ослабляя величину протекающего тока.

Подключение трехфазного двигателя к однофазной сети по схеме звезды используется для маломощных устройств, отличается повышенными потерями энергии до 50% от трехфазной системы питания.

Необходимость фазосдвигающих элементов

При подключении трехфазного электродвигателя в сеть 220 В пусковой вращающий момент не возникает. Поэтому появляется необходимость в подключении пусковых устройств. Они создают сдвиг фаз, который позволяет мотору запускаться и длительно работать под нагрузкой.

Читайте также:  Соединение электрических проводов — надежные способы

В качестве фазосдвигающих элементов могут быть использованы:

  • сопротивление;
  • индуктивность;
  • ёмкость.

Подключение трехфазного двигателя через конденсатор

Из-за подключения трехфазного двигателя через конденсатор вал начинает вращаться при подаче напряжения. Присоединение ёмкости гарантирует мотору не только пуск, но и удерживание нагрузки продолжительное время.





Схема подключения электродвигателя 380 на 220 вольт с конденсатором

Подключить трехфазный двигатель в однофазную сеть несложно и с этим справится даже электромонтер-любитель. Если возникают затруднения, следует обратиться к друзьям или знакомым. Рядом всегда найдется грамотный электрик.

Читайте также:  Проверка электродвигателей разного вида с помощью мультиметра

Как подключить 3 фазный электродвигатель к сети 220 вольт через конденсатор

Обмотки трехфазных двигателей с рабочим напряжением 380 на 220 для работы в сети на триста восемьдесят вольт соединены по схеме звезда. Это значит, что концы обмоток соединены между собой, а начала подсоединяются в сеть. Для возможности работы электродвигателя в однофазной сети 220 вольт необходимо для начала его обмотки переключить на схему треугольник. Т.е. конец первой соединить с началом второй, конец второй с началом третьей и конец третьей с началом первой.

Эти соединения и будут выводами двигателя для подключения к электропитанию. Два вывода необходимо через двухполюсной выключатель подсоединить к нулю и фазе сети в 220 вольт. Третий вывод через рабочие конденсаторы, соединить с каким либо из первых двух выводов из двигателя. Можно пробовать запускать.

Если запуск прошел успешно, двигатель работает с приемлемой мощностью и не сильно греется, то можно ничего не менять. Получилась работоспособная схема только с рабочими конденсаторами.

Как подключить 3 фазный электродвигатель к сети 220 вольт через конденсатор

В случае запуска под нагрузкой или просто тяжелого пуска двигателя, он может раскручиваться долго и не достигать приемлемой мощности. Тогда потребуется включить в схему еще и пусковую емкость. Пусковые конденсаторы выбираются того же типа, что и рабочие. Одинаковой или в два раза превышающей ёмкость рабочих. И подключаются параллельно им. Используются только для пуска электродвигателя.

Очень удобно для такого пуска использовать своеобразный выключатель серии АП. Важно чтобы он был в исполнении с блок контактами. В нем при нажатии кнопки Пуск пара контактов остается замкнутыми до нажатия на кнопку Стоп. К ним подключают выводы двигателя и электросеть. Третий контакт замкнут только во время удержания кнопки Пуск, через него и подсоединяется пусковой конденсатор. Выключатели такого типа, только без предохранительной аппаратуры часто устанавливали на старые советские центрифуговые стиральные машинки.

Читайте также:  Как выбрать бесперебойник для газового котла?

Как подключить 3 фазный электродвигатель к сети 220 вольт через конденсатор

Какую схему соединения обмоток выбрать

Читаем информацию о рабочем напряжении на табличке:

  • 380В — только треугольник.
  • 380В/220В — треугольник или звезда.
  • 220/127 — только звезда. Очень редкий вариант.

Нужно иметь в виду, что при соединении треугольником на обмотку попадает напряжение в 1,7 раза больше, чем при соединении звездой, а значит и реализуемая мощность будет выше, но звезда обеспечивает плавный пуск.

Разрядный резистор

Схема трехфазного двигателя, включенного между одной фазой и нейтральным проводом, иногда дополняется сопротивлением. Оно служит для того, чтобы на стартовом конденсаторе не накапливался заряд, остающийся после того, как машина уже выключена. Эта энергия может вызвать электрический удар, не опасный, но крайне неприятный. Для того чтобы обезопасить себя, следует параллельно с пусковой емкостью соединить резистор (у электриков это называется «зашунтировать»). Величина его сопротивления большая – от половины мегома до мегома, а по размерам он невелик, поэтому довольно и полуваттной мощности. Впрочем, если пользователь не боится быть «ущипнутым», то без этой детали вполне можно и обойтись.

Последовательное и параллельное соединение конденсаторов

Стоит отметить, что у подключенного двигателя в бытовую сеть 220В, без особой нагрузки будет страдать одна из обмоток. Это контур, который подключается через конденсатор. В этом случае на него поступает ток, на 20-30% выше номинального. Из этого следует, что на недогруженном моторе емкость конденсатора необходимо уменьшить. Но тогда, если двигатель запускался без пускового конденсатора, последний может потребоваться.

Решить данную задачу поможет замена одного большого конденсатора на несколько, соединенных в цепь параллельным способом. Так можно подключать или отключать ненужные компоненты, используя конденсаторы в качестве пусковых. При параллельном соединении суммарную емкость в мкФ считают по формуле: Cобщ = C1 + C1 + … + Сn.

Неисправности при включении

Если после присоединения конденсаторов и подачи напряжения мотор гудит, но не запускается, причины могут быть разнообразными:

  • недостаточная ёмкость конденсатора (амперметр зафиксирует ток, превышающий допустимое значение);
  • повреждение перемычки или питающего провода;
  • неправильное соединение;
  • подача напряжения на неподходящую обмотку.

Громкий неприятный шум при включении мотора и вращении вала свидетельствует о превышенной ёмкости конденсатора.

Работать трехфазный двигатель в однофазной сети будет неплохо. Недостатком будет лишь развиваемая им мощность — не 100%, а 60—80% номинальной. Если ёмкость используется только для пуска, то полезная мощность двигателя не превысит 60% его номинальной мощности.

Как определить, по какой схеме подключены обмотки двигателя?

Метод коммутации обмотки двигателя влияет на его характеристики, однако все соединения выводов находятся под защитным кожухом, в блоке управления. Их попросту не видно, но не стоит отчаиваться. Есть способ, который позволяет узнать метод коммутации, не прибегая к разбору блока управления.

Для этого достаточно заглянуть на номерную табличку, установленную на корпусе двигателя. На ней отмечают точные технические параметры, в том числе и метод коммутации. К примеру, на ней можно обнаружить следующие обозначения: 220/380В и геометрические обозначения треугольник/звезда. Эта последовательность говорит о том, что на моторе, работающим от сети 380В., установлена схема коммутации обмоток по типу «звезда».

Однако данный способ не всегда срабатывает наверняка. Таблички на старых двигателях часто затерты либо вовсе потеряны. В таком случае придется раскручивать блок управления.

Второй способ подразумевает визуальный осмотр выводных контактов. Контактная группа может быть соединена следующим способом:

  1. Одна перемычка на трех контактах с одной стороны выводов. К свободным выводом подведены проводу питания. Это метод звезда.
  2. Выводы соединены попарно тремя перемычками. На три вывода приходит три провода питания. Это метод треугольника.

На некоторых моторах в блоке управления можно обнаружить всего три вывода. Это говорит о том, что коммутация произведена внутри самого двигателя, под защитным кожухом.

Трехфазные моторы очень выносливы и ценятся в хозяйстве, ремонте и стройке. Но они бесполезны для домашнего использования, так как бытовая сеть может дать всего одну фазу, напряжением 220В. На самом деле, это не совсем верное суждение. Подключить трехфазный асинхронный двигатель к бытовой сети возможно. Это делается при помощи радиодетали – конденсатора. Разберем данный способ подробнее.

Схема треугольник: преимущества и недостатки

Подключение электродвигателя по этому способу предполагает использование той же внешней цепочки, что и у звезды. Фаза, ноль и средняя точка нижних обкладок конденсаторов монтируются последовательно на три перемычки клеммной коробки.

Схема подключения треугольник

За счет переключения выводов обмоток по схеме треугольника подводимое напряжение 220 создает больший ток в каждой обмотке, чем у звезды. Здесь меньшие потери энергии, выше КПД.

Подключение двигателя по схеме треугольника в однофазной сети позволяет полезно использовать до 70-80% потребляемой мощности.

Для формирования фазосдвигающей цепочки здесь требуется использовать меньшую емкость рабочих и пусковых конденсаторов.

При включении двигатель он может начать вращение не в ту сторону, которая требуется. Нужно сделать ему реверс.

Для этого достаточно в обеих схемах (звезды или треугольника) поменять местами приходящие от сети провода на клеммной колодке. Ток потечет по обмотке в противоположную сторону. Ротор изменит направление вращения.

Прямой пуск

Подразумевает подключение намоток статора к электросети без «посредников». Подходит моторам с короткозамкнутым ротором. Это двигатели небольшой мощности, у которых при подключении напрямую к электросети статорных обмоток, образующимися пусковыми токами не вызывается перегрев, способный вывести технику из строя.

В асинхронных двигателях соотношение индуктивности обмоток к их сопротивлению (L/R) небольшое. И оно тем меньше, чем меньше мощность устройства. Поэтому во время запуска образующийся свободный ток быстро затухает, и им можно пренебречь. Брать в учет будет только ту силу тока, которая установилась в результате переходного процесса.

Ниже на рисунке (а) представлена схема магнитного пускателя, обозначенного буковой К. Технически это электромагнитный выключатель, часто применяемый при запуске электродвигателей с короткозамкнутым ротором. Он необходим для автоматического разгона по естественной механической характеристике (обозначим М) от начала запуска (точка П) до момента, когда М станет равным моменту сопротивления (Мс).

Подключение трехфазного двигателя к однофазной сети без потери мощности

На картинке (б) представлен график зависимости пускового тока от начального момента. Исходя из него, ускорение разгона равно разности абсцисс графиков М и М(с). В таком случае, если Мпуск будет меньше Мс, то разогнаться у электродвигателя не получится. Чтобы получить оптимальное для разгона значение Мпуск для мотора с короткозамкнутым ротором используйте формулу (коэффициент скольжения s равен единице):

Отношение Мпуск к номинальному (Мном) – это величина, определяемая как кратность начального момента. Обозначается kпм. Коэффициент для двигателей с короткозамкнутым ротором входит в диапазон от 1 до 1,8 и устанавливается ГОСТом.

Пример. Если kпм=1,4, а Мном=5000 Н*м, то прямой запуск должен начинаться с Мп = 7000 Н*м.

Прямой запуск двигателя обладает преимуществами:

  • Дешевизна;
  • Простота;
  • Минимальный нагрев обмоток при запуске.

Недостатки метода:

  • Величина Мпуск составляет до 300% от Мном;
  • Пусковой ток составляет до 800% от номинального (смотрите графики снизу).

Подключение трехфазного двигателя к однофазной сети без потери мощности

Даже с перечисленными недостатками прямой запуск остается наиболее предпочтительным для асинхронных электродвигателей с короткозамкнутым ротором, т.к. обеспечивает высокие энергетические показатели.

Схема подключения магнитного пускателя от контроллера

Последние 10 лет в новой промышленной автоматике широко применяются контроллеры. Катушки пускателей также включаются с выходов контроллера. И в данном случае для защиты от КЗ и теплового перегрева используется схема подключения двигателя номер 8:

8. Схема подключения пускателя с управлением от контроллера. ПРАКТИЧЕСКАЯ СХЕМА

На схеме QF – это мотор-автомат, или автомат защиты двигателя, как в схеме 4. Только изобразил я его по современному. В данном схема подключения пускателя “спрятана” в пунктире. Там находится контроллер, который всем управляет, и включает двигатель согласно программе, заложенной в нём.

При перегрузке двигателя мотор-автомат его отключает, и размыкает свой дополнительный (четвертый, сигнальный) контакт. Это необходимо только для того, чтобы “проинформировать” контроллер о аварии. Часто этот контакт просто-напросто входит в контрольную цепь, и останавливает весь станок.

Как переключить схему двигателя в “Звезду” и в “Треугольник” вручную

Если не нужна никакая автоматика, а двигатель работает постоянно в “Звезде” или в “Треугольнике”, то используя рожковый ключ, можно переключить схему соединения обмоток вручную.

Шильдик двигателя 220 / 380 В 0,37 кВт

На оборотной стороне крышки борно, как обычно, приведена схема:

Схема подключения 220 – 380 на крышке двигателя

Двигатель питался напрямую от трехфазной сети 380 В через контактор и был собран в “Звезду:

Клеммы двигателя в подключены в схеме “Звезда”

Откручиваем гайки М4, снимаем перемычки и провода питания:

Разбираем схему, откидываем провода

Собираем схему в треугольник, на пониженное напряжение 220 В:

Собираем треугольную схему на 220 В

Переделка понадобилась в связи с тем, что нужно изменить скорость вращения двигателя, а для этого применить частотник. А частотники на такую мощность, как правило, однофазные. В результате – поехали!

Кстати, по частотникам планирую цикл статей, подписывайтесь!

Проверка сопротивления изоляции обмоток статора

Если двигатель при хранении находился в неотапливаемом помещении, то он контактировал с влажным воздухом, отсырел. Его изоляция нарушилась, способна создавать токи утечек. Поэтому ее качество надо оценивать электрическими измерениями.

Тестер в режиме омметра не всегда способен выявить такое нарушение. Он покажет только явный брак: слишком маленькая мощность его источника тока не обеспечивает точный результат замера. Для проверки состояния изоляции необходимо пользоваться мегаомметром — специальным прибором с мощным источником питания, обеспечивающим приложение к измерительной цепи повышенного напряжения 500 или 1000 вольт.

Оценка состояния изоляции должна проводиться до подачи рабочего напряжения на обмотки. Если выявлены токи утечек, то можно попытаться просушить двигатель в теплой, хорошо проветриваемой среде. Часто этот прием позволяет восстановить работоспособность электрической схемы, собранной внутри сердечника статора.

Как подобрать конденсаторы: 3 важных критерия

Трехфазный двигатель создает вращающееся магнитное поле статора за счет равномерного прохождения синусоид токов по каждой обмотке, разнесенных в пространстве на 120 градусов.

Трехфазное напряжение

В однофазной сети такой возможности нет. Если подключить одно напряжение на все 3 обмотки сразу, то вращения не будет — магнитные поля уравновесятся. Поэтому на одну часть схемы подают напряжение, как есть, а на другую сдвигают ток по углу вращения конденсаторами.

Сложение двух магнитных полей создает импульс моментов, раскручивающих ротор.

От характеристик конденсаторов (величины емкости и допустимого напряжения) зависит работоспособность создаваемой схемы.

Для маломощных двигателей с легким запуском на холостом ходу в отдельных случаях допустимо обойтись только рабочими конденсаторами. Всем остальным движкам потребуется пусковой блок.

Обращаю внимание на три важных параметра:

  1. емкость;
  2. допустимое рабочее напряжение;
  3. тип конструкции.

Как подобрать конденсаторы по емкости и напряжению

Существуют эмпиреческие формулы, позволяющие выполнять простой расчет по величине номинального тока и напряжения.

Как подобрать конденсаторы

Однако люди в формулах часто путаются. Поэтому при контроле расчета рекомендую учесть, что для мощности в 1 киловатт требуется подбирать емкость на 70 микрофарад для рабочей цепочки. Зависимость линейная. Смело ей пользуйтесь.

Доверять всем этим методикам можно и нужно, но теоретические расчеты необходимо проверить на практике. Конкретная конструкция двигателя и прилагаемые нагрузки на него всегда требуют корректировок.

Конденсаторы рассчитываются под максимальное значение тока, допустимого по условиям нагрева провода. При этом расходуется много электроэнергии.

Если же электродвигатель преодолевает нагрузки меньшей величины, то емкость конденсаторов желательно снизить. Делают это опытным путем при наладке, замеряя и сравнивая токи в каждой фазе амперметром.

Чаще всего для пуска асинхронного электродвигателя используют металлобумажные конденсаторы.

Конденсаторы металлобумажные

Они хорошо работают, но обладают низкими номиналами. При сборке в конденсаторную батарею получается довольно габаритная конструкция, что не всегда удобно даже для стационарного станка.

Сейчас
промышленностью выпускаются малогабаритны электролитические конденсаторы, приспособленные для работы с электродвигателями на переменном токе.

Конденсаторы для электродвигателя

Их внутреннее устройство изоляционных материалов приспособлено для работы под разным напряжением. Для рабочей цепочки оно составляет не менее 450 вольт.

У пусковой схемы с условиями кратковременного включения под нагрузку оно уменьшено до 330 за счет снижения толщины диэлектрического слоя. Эти конденсаторы меньше по габаритам.

Это важное условие следует хорошо понимать и применять на практике. Иначе конденсаторы на 330 вольт взорвутся при длительной работе.

Скорее всего для конкретного двигателя одним конденсатором не отделаться. Потребуется собирать батарею, используя последовательное и параллельное соединение их.

Последовательное и параллельное соединение конденсаторов

При параллельном подключении общая емкость суммируется, а напряжение не меняется.

Последовательное соединение конденсаторов уменьшает общую емкость и делит приложенное напряжение на части между ними.

Какие типы конденсаторов можно использовать

Номинальное напряжение сети 220 вольт — это действующая величина. Ее амплитудное значение составляет 310 вольт. Поэтому минимальный предел для кратковременной работы при запуске выбран 330 V.

Действующее напряжение

Запас напряжения до 450 V для рабочих конденсаторов учитывает броски и импульсы, которые создаются в сети. Занижать его нельзя, а использование емкостей с большим резервом значительно увеличивает габариты батареи, что нерационально.

Для фазосдвигающей цепочки допустимо использовать полярные электролитические конденсаторы, которые созданы для протекания тока только в одну сторону. Схема их включения должна содержать токоограничивающий резистор в несколько Ом.

Схема подключения полярных конденсаторов

Без его использования они быстро выходят из строя.

Перед установкой любого конденсатора необходимо проверить его реальную емкость мультиметром, а не полагаться на заводскую маркировку. Особенно это актуально для электролитов: они зачастую преждевременно высыхают.

Этапы выполнения работы:

1. Внимательно осмотрев электродвигатель, отыскать панельку (обычно, алюминиевая пластинка) с информацией о параметрах. Не нужно браться за переделку мотора мощностью более 1 кВт (1kW). Надпись DY 220/400 означает, что мотор допускается включать как по схеме «треугольник» (D), так и «звезда» (Y). Рабочее напряжение составляет 220 вольт одно-/либо 400 трехфазной. Клеммы, обозначенные L(1÷3), для подключения фаз.
2. Стандартно катушки 3-фазного электромотора включены «звездой». Изменение положения полосковых перемычек создаст схему «треугольник».
3. После этого L1 соединим с фазной жилой, а на L3 — нулевой провод. Среднюю клемму (L2) подключим на сдвигающий конденсатор, второй вывод которого соединяем с фазой или нулем. Это определяет направление вращения якоря. Мощность двигателя 100 Вт потребует емкости 8÷10 мкФ, для 0,25 кВт нужен конденсатор 20 мкФ.
4. Удобно оперативно менять направление вращения, переключая конденсатор с фазного проводника на нулевой. Двухполюсный выключатель подаст питание двигателя.

Подсчет итоговой ёмкости

При параллельном соединении конденсаторов их ёмкости складываются, а вот при последовательном — наоборот, суммарная ёмкость будет меньше, тут равна сумма обратных значений. Когда два одинаковых конденсатора соединяются параллельно суммарная ёмкость удваивается, а если последовательно, то уменьшается в два раза. То есть сумма ёмкости двух конденсаторов по 100 микрофарад может быть и 200 μF, и 50 μF. Всё зависит от типа их соединения между собой.

Другой пример: суммарная ёмкость конденсаторов 60 μF и 90 μF при параллельном соединении будет 150 μF, при последовательном — 36 μF. Это можно творчески использовать при подборе из того, что есть, или при покупке подешевле.

Какие знания потребуются

В школе на уроках физики все мы изучали действие электродвигателя и его устройство. Но навряд ли по данным знаниям можно понять, как подключать его к сети. Да и школьные знания уже давно подзабыты.

Подключение трехфазного двигателя к однофазной сети без потери мощности

Именно поэтому есть определенные правила и теоретические знания, которые необходимы будут в этом процессе. Вот, что потребуется изучить:

В первую очередь потребуется изучить всю конструкцию электродвигателей разных моделей.
Так же необходимо будет узнать, какие есть варианты схем способов подключения двигателя и для чего необходима обмотка.
Еще одно, что важно знать в таком случае — устройство вспомогательных компонентов двигателя.

Подключение трехфазного двигателя к однофазной сети без потери мощности

Ранее все данные можно было узнать о двигателе по прикрепленной на нем табличке. Там даже указывалась схема подключения прибора.

Подключение трехфазного двигателя к однофазной сети без потери мощности

Однако в настоящее время не на всех моделях можно отыскать даже номер и серию мотора. Таким образом, все это придется узнавать из справочника или в сети и с применением мультиметра.

Подключение трехфазного двигателя к однофазной сети без потери мощности
Подключение трехфазного двигателя к однофазной сети без потери мощности
Подключение трехфазного двигателя к однофазной сети без потери мощности
Подключение трехфазного двигателя к однофазной сети без потери мощности
Подключение трехфазного двигателя к однофазной сети без потери мощности
Подключение трехфазного двигателя к однофазной сети без потери мощности
Подключение трехфазного двигателя к однофазной сети без потери мощности
Подключение трехфазного двигателя к однофазной сети без потери мощности
Подключение трехфазного двигателя к однофазной сети без потери мощности
Подключение трехфазного двигателя к однофазной сети без потери мощности
Подключение трехфазного двигателя к однофазной сети без потери мощности
Подключение трехфазного двигателя к однофазной сети без потери мощности
Подключение трехфазного двигателя к однофазной сети без потери мощности
Подключение трехфазного двигателя к однофазной сети без потери мощности
Подключение трехфазного двигателя к однофазной сети без потери мощности
Подключение трехфазного двигателя к однофазной сети без потери мощности
Подключение трехфазного двигателя к однофазной сети без потери мощности
Подключение трехфазного двигателя к однофазной сети без потери мощности

Прибор укажет на наличие или отсутствие короткого замыкания по корпусу устройства.

Подключение трехфазного двигателя к однофазной сети без потери мощности

Схема сдвига фаз токов конденсаторами и дросселем: что мне не понравилось

Это третья обещанная в заголовке конструкция, которую я реализовал два десятка лет назад, проверил в работе, а потом забросил. Она позволяет использовать до 90% трехфазной мощности двигателя, но обладает недостатками. О них позже.

Собирал я преобразователь трехфазного напряжения на мощность 1 киловатт.

Схема трехфазного преобразователя напряжения

В его состав входят:

  • дроссель с индуктивным сопротивлением на 140 Ом;
  • конденсаторная батарея на 80 и 40 микрофарад;
  • регулируемый реостат на 140 Ом с мощностью 1000 ватт.

Одна фаза работает обычным способом. Вторая с конденсатором сдвигает ток вперед на 90 градусов по ходу вращения электромагнитного поля, а третья с дросселем формирует его отставание на такой же угол.

В создании фазосдвигающего магнитного момента участвуют токи всех трех фаз статора.

Корпус дросселя пришлось собирать механической конструкцией из дерева на пружинах с резьбовой настройкой воздушного зазора для наладки его характеристик.

Конструкция дросселя

Конструкция реостата — это вообще «жесть». Сейчас его можно собрать из мощных сопротивлений, купленных в Китае.

Мощное сопротивление из Китая

Мне даже приходила мысль использовать водяной реостат.

Водяной реостат

Но я от нее отказался: уж слишком опасная конструкция. Просто намотал на асбестовой трубе толстую стальную проволоку для проведения эксперимента, положил ее на кирпичи.

Когда запустил двигатель циркулярной пилы, то он работал нормально, выдерживал приложенные нагрузки, нормально распиливал довольно толстые колодки.

Все бы хорошо, но счетчик намотал двойную норму: этот преобразователь берет такую же мощность на себя, как и двигатель. Дроссель и проволока неплохо нагрелись.

Из-за высокого потребления электроэнергии, низкой безопасности, сложной конструкции я не рекомендую такой преобразователь.

Подключение 3 фазного двигателя в однофазную сеть через частотный преобразователь

Преобразователи частоты (ПЧ) – устройства для управления электродвигателей переменного тока. Оборудование позволяет регулировать скорость вращения и момент на валу изменением частоты питающего напряжения. Однофазные ПЧ могут применяться для включения трехфазных двигателей к сети 220 В.

Подключение трехфазного электродвигателя к однофазной сети

Оборудование создает симметричные токи во всех трех фазах и позволяет устранить такие недостатки пуска через конденсатор как:

  • Невысокий момент на валу при пуске.
  • Повышенный нагрев обмоток.
  • Избыточный шум при работе.
  • Низкий к.п.д.

Для подключения к сети 220 В выбирают однофазный ПЧ. Включать трехфазное устройство в однофазную сеть запрещено. Запас мощности преобразователя частоты должен составлять не меньше 2 кВт. При работе 3 фазного двигателя в однофазной сети наблюдаются значительные броски напряжения и тока, при недостатке мощности преобразователя работа привода будет нестабильна. Защита будет отключать устройство и выдавать сообщения об ошибках.

Подключение осуществляется в следующем порядке:

  • Проверка состояния двигателя. При этом определяют плотное прилегание крышек корпуса, исправность подшипников. Желательно измерить сопротивление обмоток. На этом же этапе определяют концы и начала обмоток статора.
  • Соединение обмоток по схеме «треугольник». Для подключения в однофазную сеть через ПЧ необходимо соединить обмотки так, чтобы межфазное напряжение составляло 220 В.
  • Подключение двигателя к частотному преобразователю. Для этого применяют экранированные кабели, рекомендованной производителем марок, сечением, отвечающем мощности выбранного ПЧ. Подключение осуществляется через емкостные входы преобразователя, внешние конденсаторы при этом не нужны.
  • Подключение двигателя к частотному преобразователю

  • Настройка. При этом задаются параметры пусковой и рабочей емкости, вводят другие характеристики электродвигателя. Большинство ПЧ имеют функции автоматического определения параметров двигателя.

Далее выполняют первый пуск. В процессе выявляют и устраняют ошибки подключения и настройки, проверяют корректность работы привода в разных режимах.

Back To Top