Вихревое устройство: общее понятие
Подобная установка конструктивно достаточно проста. Она используется для эффективного и выгодного отопления здания с минимальными финансовыми затратами. Экономичность обуславливается специальным нагревом воды через кавитацию. Такой метод заключается в создании мелких пузырьков из пара в зоне сниженного давления рабочей жидкости, которое обеспечивается специальными звуковыми колебаниями, функционированием насоса.
Кавитационный нагреватель справляется с переработкой механической энергии в тепловой поток, что немаловажно для промышленных объектов. В них нагревательные элементы периодически выходят из строя, поскольку функционируют с жидкостями большой разности по температуре.
Именно такие кавитаторы выступают надежной заменой устройствам, работа которых зависит от твердых видов топлива.
В этом видео вы узнаете, как устроен теплогенератор:
Немного истории
Вихревой тепловой генератор считается перспективной и инновационной разработкой. А между тем, технология не нова, так как уже почти 100 лет назад ученые думали над тем, как применить явление кавитации.
Первая действующая опытная установка, так-называемая «вихревая труба», была изготовлена и запатентована французским инженером Джозефом Ранком в 1934 году.
Ранк первым заметил, что температура воздуха на входе в циклон (воздухоочиститель) отличается от температуры той же воздушной струи на выходе. Впрочем, на начальных этапах стендовых испытаний, вихревую трубу проверяли не на эффективность нагрева, а наоборот, на эффективность охлаждения воздушной струи.
Технология получила новое развитие в 60- х годах двадцатого века, когда советские ученые догадались усовершенствовать трубу Ранка, запустив в нее вместо воздушной струи жидкость.
За счет большей, в сравнении воздухом, плотности жидкой среды, температура жидкости, при прохождении через вихревую трубу, менялась более интенсивно. В итоге, опытным путем было установлено, что жидкая среда, проходя через усовершенствованную трубу Ранка, аномально быстро разогревалась с коэффициентом преобразования энергии в 100%!
К сожалению, необходимости в дешёвых источниках тепловой энергии на тот момент не было, и технология не нашла практического применения. Первые действующие кавитационные установки, предназначенные для нагрева жидкой среды, появились только в середине 90-х годов двадцатого века.
Череда энергетических кризисов и, как следствие, увеличивающийся интерес к альтернативным источникам энергии послужили причиной для возобновления работ над эффективными преобразователями энергии движения водяной струи в тепло. В результате, сегодня можно купить установку необходимой мощности и использовать ее в большинстве отопительных систем.
Конструктивные особенности оборудования
Что же представляет собой такой агрегат? Основным узлом в нем является кавитационный теплогенератор, выполненный в виде насоса, со специальным профилем проточной части. Проходя через него, вода нагревается. Происходит это за счет формирования вихревого потока. Возникая в нем, кавитационные разрывы приводят к нагреву жидкости. Причем роль теплоносителя может играть любой антифриз.
Смотрим видео, устройство генератора:
Нагрев приводит к изменению химического состава жидкости за счет резкого снижения ее давления. Выделяемая при этом энергия может использоваться для отопления и является достаточно дешевой.
Такие установки, как правило потребляют в 1,5 раза меньше энергии, чем радиаторные и другие системы. При этом нагрев жидкости в них происходит в замкнутом контуре при его прохождении через кавитатор.
Принцип работы таких устройств заключается в превращении одного вида энергии в другой. Она в свою очередь преобразуется в тепловую, причем разница между выделяемой и потребляемой достаточно существенная.
К достоинствам кавитационных теплогенераторов следует отнести возможность их монтажа без каких-либо разрешительных документов. Это связано с тем, что электроэнергия в них используется лишь для работы электродвигателя.
И хотя сегодня ни одна из существующих теорий не может полностью описать процессы, происходящие в кавитаторе, они все же, эксплуатируются по всему миру и причем довольно успешно. Что касается научных исследований в этой сфере, то они сводятся к фиксации особенностей работы тепловых установок такого типа.
КТГ своими руками
Наиболее простым вариантом для реализации в домашних условиях является кавитационный генератор трубчатого типа с одним или несколькими соплами для нагревания воды. Поэтому разберем пример изготовления именно такого устройства, для этого вам понадобится:
- Насос – для нагревания обязательно выбирайте тепловой насос, который не боится постоянного воздействия высоких температур. Он должен обеспечивать рабочее давление на выходе в 4 – 12атм.
- 2 манометра и гильзы для их установки – размещаются с двух сторон от сопла для измерения давления на входе и выходе из кавитационного элемента.
- Термометр для измерения величины нагрева теплоносителя в системе.
- Клапан для удаления лишнего воздуха из кавитационного теплогенератора. Устанавливается в самой верхней точке системы.
- Сопло – должно иметь диаметр проходного отверстия от 9 до 16мм, делать меньше не рекомендуется, так как кавитация может возникнуть уже в насосе, что значительно снизит срок его эксплуатации. По форме сопло может быть цилиндрическим, коническим или овальным, с практической точки зрения вам подойдет любое.
- Трубы и соединительные элементы (радиаторы отопления при их отсутствии ) – выбираются в соответствии с поставленной задачей, но наиболее простым вариантом являются пластиковые трубы под пайку.
- Автоматика включения/отключения кавитационного теплогенератора – как правило, подвязывается под температурный режим, устанавливается на отключение примерно при 80ºС и на включение при снижении менее 60ºС. Но режим работы кавитационного теплогенератора вы можете выбрать самостоятельно.
Рис. 6: схема кавитационного теплогенератора
Перед соединением всех элементов желательно нарисовать схему их расположения на бумаге, стенах или на полу. Места расположения необходимо размещать вдали от легковоспламеняемых элементов или последние нужно убрать на безопасное расстояние от системы отопления.
Соберите все элементы, как вы изобразили на схеме, и проверьте герметичность без включения генератора. Затем опробуйте в рабочем режиме кавитационного теплогенератора, нормальным нарастанием температуры жидкости считается 3- 5ºС за одну минуту.
Создание каркаса и выбор элементов
Чтобы сделать самодельный вихревой теплогенератор, для подключения его к отопительной системе, потребуется двигатель.
И, чем больше будет его мощность, тем больше он сможет нагреть теплоноситель (то есть быстрее и больше будет производить тепла). Однако здесь необходимо ориентироваться на рабочее и максимальное напряжение в сети, которое к нему будет подаваться после установки.
Производя выбор водяного насоса, необходимо рассматривать только те варианты, которые двигатель сможет раскрутить. При этом, он должен быть центробежного типа, в остальном ограничений по его выбору нет.
Также нужно приготовить под двигатель станину. Чаще всего она представляет собой обычный железный каркас, куда крепятся железные уголки. Размеры такой станины будут зависеть, прежде всего, от габаритов самого двигателя.
После его выбора необходимо нарезать уголки соответствующей длины и осуществить сварку самой конструкции, которая должна позволить разместить все элементы будущего теплогенератора.
Далее нужно для крепления электродвигателя вырезать еще один уголок и приварить к каркасу, но уже поперек. Последний штрих, в подготовке каркаса – это покраска, после которой уже можно крепить силовую установку и насос.
Кавитационные генераторы: преимущества
Такие установки нашли широкое применение в бутовых условиях и на производстве. Причиной тому выступают следующие факторы, их характеризующие:
- ценовая доступность;
- экономичность отопительной системы;
- возможность создания конструкции своими руками;
- высокий КПД обогрева.
Это интересно: сборка воздушного солнечного коллектора своими руками.
Правила эксплуатации гласят, что нельзя устанавливать вихревые изделия внутри жилого помещения из-за создания высокоуровневого шума. Оптимальным вариантом станет обустройство отдельной хозпостройки, котельной.
К недостаткам относятся довольно большие размеры готового к эксплуатации обогревателя. Также отмечается чрезмерная мощность для частного дома, коттеджа, возможная сложность приобретения материалов, которые понадобятся в случае самостоятельного изготовления кавитатора.
В данном обогревателе, одним из плюсов является высокий КПД
Плюсы и минусы
Основным достоинством кавитационного теплогенератора считается экономичность работы отопительного устройства. Также среди плюсов отмечают следующие факторы:
- высокий уровень производительности прибора,
- возможность самостоятельного изготовления и монтажа,
- оборудование можно установить без разрешительных документов.
Среди недостатков выделяют:
- необходимо обустроить отдельное помещение под котельную,
- достаточно высокий уровень шума при работе прибора.
Нельзя забывать, что оборудование занимает много места.
Технология изготовления. Двигатель
Обратите внимание! Ввиду того, что не существует никакой информации касаемо характеристик устройства с точки зрения мощности насоса, все параметры, приведенные ниже, будут примерными.
Читайте так же про установку водяного насоса для отопления — тут
Самый простой вариант изготовить вихревой теплогенератор своими руками – использовать в работе стандартные детали. Нам может подойти практически любой двигатель, чем большую мощность он будет иметь, тем больше теплоносителя сможет нагреть. При выборе электродвигателя следует учесть, в первую очередь, напряжение в вашем доме. Следующий этап – создание станины под двигатель. Станина представляет собой обычный железный каркас, для которого лучше использовать железные уголки. Размеров никаких мы не скажем, так как они зависят от габаритов двигателя и определяются на месте.
- Нарезаем турбинкой угольники необходимой длины. Свариваем из них квадратную конструкцию таких размеров, чтобы все элементы туда поместились.
- Вырезаем дополнительный уголок и привариваем его к каркасу поперек таким образом, чтобы к нему можно было прикрепить электродвигатель.
- Красим станину, ждем, пока высохнет.
- Сверлим отверстия для крепежа, закрепляем электродвигатель.
Строение нагревателя и принцип работы
Кавитационное отопление характеризуется образованием пузырьков из пара в рабочей жидкости. В результате такого действия давление постепенно снижается благодаря высокой скорости потока. Следует отметить, что необходимое парообразование задается специальным излучением лазерных импульсов либо акустикой, заданной определенными звуками. Воздушные области закрытого типа смешиваются с водяной массой, после чего поступают в зону большого давления, где вскрываются и излучают ожидаемую ударную волну.
Оборудование кавитационного типа отличается способом функционирования. Схематично оно выглядит так:
- Водяной поток перемещается по кавитатору, в котором с помощью циркуляционного насоса обеспечивается рабочее давление, поступающее в рабочую емкость.
- Далее в таких емкостях повышается скорость, соответственно, и давление жидкости посредством установленных по чертежам трубок.
- Потоки, достигая центральной части камеры, перемешиваются, в результате чего и образуется кавитация.
- В результате описанного процесса пузырьки пара не увеличиваются в размерах, отсутствует их взаимодействие с электродами.
- После этого вода перемещается в противоположную часть емкости и возвращается для совершения нового круга.
- Нагревание обеспечивается передвижением и расширением жидкости в месте выхода из сопла.
Из работы вихревой установки видно, что ее конструкция незамысловата и проста, но при этом обеспечивает быстрый и выгодный обогрев помещения.
Типы обогревателей
Кавитационный котел отопления относится к одному из распространенных типов обогревателей. Наиболее востребованные из них:
- Роторные установки, среди которых особого внимания заслуживает устройство Григгса. Суть его действия основана на центробежном насосе роторного действия. Внешне описываемая конструкция напоминает диск с несколькими отверстиями. Каждая такая ниша называется ячейкой Григгса, их количество и функциональные параметры взаимозависимы с частотой вращения привода, типом применяемой генераторной установки. Рабочая жидкость подогревается в пространстве между ротором и статором из-за быстрого перемещения по дисковой поверхности.
- Статические обогреватели. Котлы лишены каких-либо передвигающихся деталей, кавитация в них обеспечивается за счет специальных элементов Лаваля. Установленный в отопительную систему насос задает необходимое давление воды, которая начинает быстро передвигаться и подогреваться. За счет узких отверстий в соплах жидкость перемещается в ускоренном режиме. Из-за ее быстрого расширения достигается необходимая для обогрева кавитация.
Выбор того или иного нагревателя зависит от потребностей человека. Следует учитывать, что роторный кавитатор более производителен, к тому же он отличается меньшими размерами.
Особенность статического агрегата заключается в отсутствии вращающихся деталей, чем и обуславливается его продолжительный эксплуатационный срок. Длительность работы без технического обслуживания достигает 5 лет. Если же сломается сопло, его без труда можно заменить, что стоит гораздо дешевле в сравнении с приобретением нового рабочего элемента в роторную установку.
Инструмент, необходимый для сборки агрегата
С нуля собрать такой агрегат самостоятельно невозможно, так как для его изготовления потребуется задействовать технологическое оборудование, которого у домашнего мастера просто нет. Поэтому своими руками обычно собирают лишь агрегат, в некотором роде повторяющий . Его называют прибором Потапова.
Однако даже для сборки этого устройства необходимо оборудование:
- Дрель и набор сверл для нее;
- Сварочный аппарат;
- Машинка для шлифовки;
- Ключи;
- Крепеж;
- Грунтовка и малярная кисть.
Кроме этого потребуется приобретение двигателя, работающего от сети в 220 В и неподвижная основа для установки на ней самого прибора.
Этапы изготовления генератора
Сборка устройства начинается с подключения к насосу, желательного напорного типа, патрубка смешивания. Его присоединяют, используя специальный фланец. В центре донышка патрубка выполняется отверстие, по которому будет выводиться горячая вода. Чтобы контролировать ее поток используется тормозящее приспособление. Оно находится перед донышком.
Но так как в системе циркулирует и холодная вода, то ее течение должно также регулироваться. Для этого используют дисковый выпрямитель. При остывании жидкости она направляется к горячему концу, где в специальном смесителе происходит ее смешивание с нагретым теплоносителем.
Далее переходят к сборке конструкции вихревого теплогенератора своими руками. Для этого использую шлифовальную машинку нарезают угольники из которых собирается основная конструкция. Как это сделать видно на расположенном ниже чертеже.
Собирать конструкцию можно двумя способами:
- Используя болты и гайки;
- При помощи сварочного аппарата.
В первом случае приготовьтесь к тому, что придется выполнить отверстия под крепеж. Для этого нужна дрель. В процессе сборки необходимо учитывать все размеры – это поможет получить агрегат с заданными параметрами.
Самый первый этап – это создание станины, на которой устанавливается двигатель. Ее собирают из железных уголков. Размеры конструкции зависят от размеров двигателя. Они могут отличаться и подбираются под конкретное устройство.
Чтобы закрепить двигатель на собранной станине потребуется еще один угольник. Он будет выполнять роль поперечины в конструкции
При выборе двигателя специалисты рекомендуют обращать внимание на его мощность. От этого параметра зависит количество нагреваемого теплоносителя
Смотрим видео, этапы сборки теплогенератора:
Последний этап сборки – это покраска рамы и подготовка отверстий для установки агрегата. Но прежде, чем приступать к монтажу насоса следует рассчитать его мощность. Иначе двигатель может не справиться с запуском установки.
После того, как все комплектующие подготовлены насос присоединяется к отверстию из которого поступает под давлением вода и агрегат готов к работе. Теперь, используя второй патрубок его подсоединяют к отопительной системе.
Подключение прибора к системе происходит следующим образом. Сначала его подсоединяют к отверстию, по которому поступает вода. Она при этом находится под давлением. Второй патрубок используется для непосредственного подсоединения к системе отопления. Чтобы изменять температуру теплоносителя за патрубком находится запирающее устройство. При его перекрытии температура в системе постепенно увеличивается.
Могут использоваться и дополнительные узлы. Однако стоимость такого оборудования достаточно высокая.
Смотрим видео, конструкция после изготовления:
Корпус будущего генератора можно выполнить сварным. А детали к нему по вашим чертежам выточит любой токарь. Обычно он имеет форму цилиндра, закрытого с обеих сторон. По сторонам корпуса выполняются сквозные отверстия. Они нужны для подсоединения агрегата к системе отопления. Внутри корпуса помещают жиклер.
Наружную крышку генератора обычно изготавливают из стали. Затем в ней выполняются отверстия под болты и центральное, к которому впоследствии приваривается штуцер для подачи жидкости.
На первый взгляд кажется, что ничего сложного в сборке теплогенератора своими руками на дровах нет. Но на самом деле эта задача не такая уже и легкая. Конечно, если не спешить и хорошо изучить вопрос, то справиться можно. Но при этом очень важна точность размеров выточенных деталей. И особого внимания требует изготовление ротора. Ведь в случае, если он будет выточен неправильно агрегат станет работать с высоким уровнем вибрации, что негативно скажется на всех деталях. Но большего всего в такой ситуации страдают подшипники. Они будут очень быстро разбиваться.
Только правильно собранный теплогенератор будет работать эффективно. При этом его КПД может достигать 93%. Поэтому специалисты советуют.
Сфера применения
Иллюстрация | Описание сферы применения |
Отопление. Оборудование, преобразующее механическую энергию движения воды в тепло, с успехом применяется при обогреве различных зданий, начиная с небольших частных построек и заканчивая крупными промышленными объектами.
Кстати, на территории России уже сегодня можно насчитать не менее десяти населённых пунктов, где централизованное отопление обеспечивается не традиционными котельными, а гравитационными генераторами. |
|
Нагрев проточной воды для бытового использования. Теплогенератор, при включении в сеть, очень быстро нагревает воду. Поэтому такое оборудование можно использовать для разогрева воды в автономном водопроводе, в бассейнах, банях, прачечных и т.п. | |
Смешивание несмешиваемых жидкостей. В лабораторных условиях, кавитационные установки могут использоваться для высококачественного перемешивания жидких сред с разной плотностью, до получения однородной консистенции. |
Интеграция в отопительную систему частного дома
Для того, чтобы применить теплогенератор в отопительной системе, его в нее надо внедрить. Как это правильно сделать? На самом деле, в этом нет ничего сложного.
Схема внедрения вихревого теплогенератора в отопительную систему загородного дома или квартиры — кроме наличия насоса, особых отличий от монтажа обычного котла нет
Перед генератором (на рисунке отмечен цифрой 2) устанавливается центробежный насос (на рисунке — 1), которой будет поддавать воду с давлением до 6 атмосфер. После генератора устанавливается расширительный бак (на рисунке — 6) и запорная арматура.
Преимущества применения кавитационных теплогенераторов
Достоинства вихревого источника альтернативной энергии | |
Экономичность. Благодаря эффективному расходованию электричества и высокому КПД, теплогенератор экономичнее в сравнении с другими видами отопительного оборудования. | |
Малые габариты в сравнении с обычным отопительным оборудованием сходной мощности. Стационарный генератор, подходящий для отопления небольшого дома, вдвое компактнее современного газового котла.
Если установить теплогенератор в обычную котельную вместо твёрдотопливного котла, останется много свободного места. |
|
Небольшая масса установки. За счет небольшого веса, даже крупные установки высокой мощности можно запросто расположить на полу котельной, не строя специальный фундамент. С расположением компактных модификаций проблем вообще нет.
. |
|
Простая конструкция. Теплогенератор кавитационного типа настолько прост, что в нем нечему ломаться.
В устройстве небольшое количество механически подвижных элементов, а сложная электроника отсутствует в принципе. Поэтому вероятность поломки прибора, в сравнении с газовыми или даже твердотопливными котлами, минимальна. |
|
Нет необходимости в дополнительных доработках. Теплогенератор можно интегрировать в уже существующую отопительную систему. То есть, не потребуется менять диаметр труб или их расположение. | |
Нет необходимости в водоподготовке. Если для нормальной работы газового котла нужен фильтр проточной воды, то устанавливая кавитационный нагреватель, можно не бояться засоров.
За счет специфических процессов в рабочей камере генератора, засоры и накипь на стенках не появляются. |
|
Работа оборудования не требует постоянного контроля. Если за твёрдотопливными котлами нужно присматривать, то кавитационный обогреватель работает в автономном режиме.
Инструкция эксплуатации устройства проста — достаточно включить двигатель в сеть и, при необходимости, выключить. |
|
Экологичность. Кавитационные установки никак не влияют на экосистему, ведь единственный энергопотребляющий компонент — это электродвигатель. |
Как самому сделать генератор
Первым трубчатый агрегат был разработанный Потаповым. Но патент на него он не получил, т.к. до сих пор обоснование работы идеального генератора считается неполными «идеальным», на практике также пытались воссоздать прибор Шаубергер, Лазарев. На данный момент принято работать по чертежам Ларионова, Федоскина, Петракова, Николая Жука.
Фото – Вихревой кавитационных генератор потапова
Перед началом работы нужно выбрать вакуумный или бесконтактный насос (подойдет даже для скважин) по своим параметрам. Для этого необходимо учесть следующие факторы:
Мощность насоса (производится отдельный расчет); Потребная тепловая энергия; Величина напора; Тип насоса (повышающий или понижающий).
Несмотря на огромное разнообразие форм и видов кавитаторов, практически все промышленные и бытовые устройства выполнены в виде сопла, такая форма является наиболее простой и практичной. Кроме того, её легко модернизировать, благодаря чему значительно повышается мощность генератора. Перед началом работы обратите свое внимание на сечение отверстия между конфузором и диффузором. Его необходимо сделать не слишком узким, но и не широким, приблизительно от 8 до 15 см. В первом случае Вы повысите давление в рабочей камере, но мощность будет не высокой, т.к. объем нагретой воды будет относительно мал, по отношению к холодной. Помимо этих проблем, небольшая разность сечений способствует насыщению кислородом входящей воды из рабочего патрубка, этот показатель влияет на уровень шума насоса и возникновение кавитационных явлений в самом устройстве, что в принципе, негативно сказывается на его работе.
Фото – Кавитационный теплогенератор
Кавитационные теплогенераторы систем отопления обязательно имеют камеры расширения. У них может быть различный профиль в зависимости от требований и необходимой мощности. В зависимости от этого показателя может меняться конструкция генератора.
Кавитационный тепловой насос
Разнообразные способы экономии энергии или получения дарового электричества сохраняют свою популярность. Благодаря развитию Интернета информация о всевозможных «чудо-изобретениях» становится все доступнее. Одна конструкция, потеряв популярность, сменяется другой.
Сегодня мы рассмотрим так называемый вихревой кавитационный генератор — устройство, изобретатели которого обещают нам высокоэффективный обогрев помещения, в котором оно установлено.
Что это такое? Данное устройство использует эффект нагрева жидкости при кавитации — специфическом эффекте образования микропузырьков пара в зонах локального снижения давления в жидкости, происходящем либо при вращении крыльчатки насоса, либо при воздействии на жидкость звуковых колебаний.
Если Вам когда-либо доводилось пользоваться ультразвуковой ванной, то Вы могли заметить, как ее содержимое ощутимо нагревается.
Реальность использования кавитации для нагревания
В Интернете распространены статьи о вихревых генераторах роторного типа, принцип действия которых состоит в создании областей кавитации при вращении в жидкости крыльчатки специфической формы. Жизнеспособно ли данное решение?
Начнем с теоретических выкладок. В данном случае мы расходуем электроэнергию на работу электродвигателя (средний КПД — 88%), полученную механическую энергию же частично тратим на трение в уплотнениях кавитационного насоса, частично — на нагрев жидкости вследствие кавитации.
То есть в любом случае в тепло будет преобразована лишь часть потраченной электроэнергии.
Но если вспомнить, что КПД обычного ТЭНа составляет от 95 до 97 процентов, становится понятным, что чуда не будет: гораздо более дорогой и сложный вихревой насос окажется менее эффективен, чем простая нихромовая спираль.
Можно возразить, что при использовании ТЭНов в систему отопления необходимо вводить дополнительные циркуляционные насосы, в то время как вихревой насос сможет сам перекачивать теплоноситель.
Но, как ни странно, создатели насосов борются с возникновением кавитации, не только значительно снижающей эффективность работы насоса, но и вызывающей его эрозию.
Следовательно, насос-теплогенератор не только должен быть мощнее специализированного перекачивающего насоса, но и потребует применения более совершенных материалов и технологий для обеспечения сравнимого ресурса.
Важным моментом является тот факт, что, увеличивая кавитацию, создаваемую ротором, мы увеличиваем нагрев жидкости и одновременно снижаем эффективность насоса. Реально работающий как нагреватель кавитатор уже практически не сможет перекачивать теплоноситель, а значит, точно так же, как и ТЭН, потребует применения отдельного циркуляционного насоса. При этом общая эффективность вихревого насоса все равно будет меньше КПД его привода.
Читайте также Отопление дома из газобетона теплым полом
Кроме роторно-вихревых насосов, можно встретить такое устройство, как статический теплогенератор («вихревая труба»). В нем используется эффект кавитации, возникающий при прохождении потока жидкости сквозь сопло Лаваля и соответствующем резком изменении скорости и давления. Но по ряду причин такое устройство неэффективно в системах отопления:
- Чем больше перепад давлений, тем больше нагрев;
- Для большего перепада давлений необходимо уменьшение диаметра сопла, а следовательно — увеличение гидродинамического сопротивления системы;
- Следовательно, чем эффективнее работает сопло, тем больший запас мощности циркуляционного насоса потребуется.
Какой-либо расчет энергии, отбираемой кавитацией у потока жидкости, практически невозможен. Осознание низкой эффективности этой схемы настолько просто, что она не используется даже авторами «чудо-устройств».
Для оправдания заявляемого КПД выше единицы создатели вихревых кавитационных теплогенераторов зачастую приводят оправдания на грани комизма, вплоть до возникновения в зоне кавитации низкотемпературной ядерной реакции.
Какое-либо доверие к этой технологии подобные заверения только снижают еще сильнее.
Часто встречающиеся похвальные отзывы под статьями о подобных устройствах не выдерживают критики — каких-либо реальных данных, позволяющих провести расчет эффективности отопительных систем на основе вихревого насоса, они не предоставляют.
Распространенные устройства
Рассмотрим наиболее часто рекламируемые в Интернете вихревые насосы.
Выпускаемый НПП «ЭкоЭнергоМаш» насос НТГ-5,5 имеет следующие характеристики:
- Мощность электродвигателя: 5,5 кВт
- Теплопроизводительность: 6,6 кВт/ч
Здесь возникает первый вопрос к производителю: каким образом, в обход закона сохранения энергии, это устройство выделяет тепловой энергии больше, чем потребляет электрической? Точно такое же превышение тепловыделения над расходом энергии обещается и для других изделий этой фирмы.
Читайте так же: Перспективные солнечные панели российского производства
Московская компания «Экотепло» выпускает несколько вариантов вихревого теплогенератора, наименее мощный из которых — это 55-киловаттный НТГ-055. Столь высокая мощность привода недвусмысленно указывает на реальную тепловую производительность устройств подобного класса, хотя производитель по-прежнему указывает в описании превосходство своих изделий над традиционными электрическими котлами.
В описании устройств, производимых НПО «Термовихрь», характеристики более завуалированы. Так, для трехкиловаттной модели вихревого теплогенератора заявленная теплопроизводительность составляет 3100 ккал/ч.
Но, если вспомнить школьный курс физики, можно вычислить, что при стопроцентном преобразовании электрической энергии в тепловую 1 кВт*ч энергии равен 860 килокалориям, то есть идеальный вихревой насос с заявленной теплопроизводительностью потреблял бы 3,6 киловатт-часа электроэнергии.
Следовательно, нам вновь предлагают устройство, часть тепловой энергии берущее из ниоткуда.
Информация от производителей таких устройств, репортаж телеканала Россия
Гаситель вихрей
Да, мы сделаем приспособление с таким загадочным названием – гаситель вихрей. Он будет состоять из расположенных вдоль пластин, помещенный внутри обоих колец.
Посмотрим, что нам потребуется для работы.
- Сварка.
- Турбинка.
- Лист стали.
- Труба с толстыми стенками.
Труба должна быть меньшей, чем теплогенератор. Делаем из нее два кольца, примерно по 5 см каждое. Из листа вырезаем несколько полосок одного размера. Их длина должна составлять 1/4 длины корпуса устройства, а ширина такой, чтоб после сборки осталось свободное пространство внутри.
- Вставляем в тиски пластинку, навешиваем на одном ее конце металлические кольца и свариваем их с пластиной.
- Вынимаем пластину из зажима и поворачиваем другой стороной. Берем вторую пластину и помещаем ее в кольца таким образом, чтобы обе пластины размещались параллельно. Аналогичным образом закрепляем все оставшиеся пластины.
- Собираем вихревой генератор своими руками, а полученную конструкцию устанавливаем напротив сопла.
Отметим, что поле совершенствования устройства практически безгранично. К примеру, вместо указанных выше пластин мы можем применить проволоку из стали, скрутив ее предварительно в виде клубка. Кроме того, мы можем проделать дырки на пластинах различного размера. Конечно, обо всем этом нигде не упоминается, но кто сказал, что вы не можете использовать данные усовершенствования?
И в качестве заключения – несколько дельных советов. Во-первых, все поверхности желательно защитить окрашиванием. Во-вторых, все внутренние детали стоит делать из толстых материалов, так как он (детали) будут постоянно находиться в достаточно агрессивной среде. И в-третьих, позаботьтесь о нескольких запасных крышках, имеющих разного размера отверстия. В дальнейшем вам будет подбирать необходимый диаметр, дабы добиться максимальной производительности устройства.
Кавитационный теплогенератор отличается хорошей эффективностью и компактностью Редко какой хозяин не пытается сэкономить на отоплении или потреблении еще каких-либо благ, которые с каждым годом становятся все дороже и дороже. Чтобы сделать экономной отопительную систему жилого или производственного помещения, многие люди прибегают к помощи различных схем и методам получения тепловой энергии. Один из аппаратов, подходящий под эти цели – кавитационный теплогенератор.
Два основных вида
Несмотря на то и дело появляющиеся сообщения о том, что кто-то где-то смастерил уникальный вихревой теплогенератор своими руками такой мощности, что можно отапливать целый город, в большинстве случаев это обычные газетные утки, не имеющие под собой никакой фактической основы. Когда-нибудь, возможно, это случиться, а пока принцип работы этого прибора можно использовать только двумя способами.
Роторный теплогенератор. Корпус центробежного насоса в этом случае будет выступать в качестве статора. В зависимости от мощности по всей поверхности ротора сверлят отверстия определённого диаметра. Именно за счёт их и появляются те самые пузырьки, разрушение которых и нагревает воду. Достоинство у такого теплогенератор только одно. Он намного производительнее. А вот недостатков существенно больше.
- Шумит такая установка очень сильно.
- Изношенность деталей повышенная.
- Требует частой замены уплотнителей и сальников.
- Слишком дорогое обслуживание.
Статический теплогенератор. В отличие от предыдущей версии, здесь ничего не вращается, а процесс кавитации происходит естественным путём. Работает только насос. И список достоинств и недостатков принимает резко противоположное направление.
- Прибор может работать при низком давлении.
- Разница температур на холодном и горячих концах довольно велика.
- Абсолютно безопасен, в каком бы месте не использовался.
- Быстрый нагрев.
- КПД 90 % и выше.
- Возможность использования, как для обогрева, так и для охлаждения.
Единственным недостатком статического ВТГ можно считать дороговизну оборудования и связанную с этим довольно долгую окупаемость.
Самостоятельное изготовление оборудования
Создать кавитатор своими руками вполне реально, но предварительно стоит ознакомиться со схематическими особенностями, точными чертежами агрегата, понять и подробно изучить принцип, по которому он действует. Наиболее простой моделью принято считать ВТГ Потапова с показателем КПД в 93%. Схематически теплогенератор довольно прост, будет уместен в быту и промышленном применении.
Приступая к сборке агрегата, необходимо подобрать в систему насос, который должен полностью соответствовать требованиям мощности, необходимой тепловой энергии. В большинстве своем описываемые генераторы по форме напоминают сопло, такие модели самые удобные и простые для домашнего применения.
При собственноручном создании теплогенератора не забываем нужные зап.части, например, гильзы
Создание кавитатора невозможно без предварительной подготовки определенных инструментов и приспособлений. К ним относятся:
- патрубки входного и выходного типа, оснащенные краниками;
- манометры, измеряющие давление;
- термометр, без которого невозможно произвести замер температуры;
- гильзы, которыми дополняются термометры;
- вентили, с помощью которых из всей отопительной системы устраняются воздушные пробки.
Специалисты рекомендуют следить за диаметральным показателем сечения отверстия, которое присутствует между конфузором и диффузором. Оптимальные пределы варьируются от 8 до 15 единиц, выход за эти рамки нежелателен.
Последовательность конструирования кавитационного теплогенератора своими руками представлена следующими действиями:
- Выбор насоса, который предназначен для эксплуатации с жидкостями высоких температур. В противном случае он быстро выйдет из строя. К такому элементу предъявляется обязательное требование: создание давления от 4 атмосфер.
- Выполнение емкости для кавитации. Главным условием выступает подбор необходимого по сечению проходного канала.
- Выбор сопла с учетом особенностей конфигурации. Такая деталь может быть цилиндрического, конусообразного, округлого типа. Важно, чтобы на входе воды в емкость развивался вихревой процесс.
- Подготовка внешнего контура — немаловажная процедура. Он представляет собой изогнутую трубку, которая отходит от кавитационной камеры. Далее она соединяется с двумя гильзами от термометра и двумя манометрами, а также с воздушным вентилем, помещенным в пространство между выходом и входом.
Когда закончена работа с корпусом, следует поэкспериментировать с обогревателем. Процедура заключается в подведении насосной установки к электросети, при этом радиаторы подключаются с обогревательной системой. Следующий шаг — включение сети.
Должен осуществляться строгий контроль показателей манометров. Разница между цифрами на входе и выходе должна колебаться в пределах 8-12 атмосфер.
Если конструкция работает исправно, в нее подается необходимое количество воды. Хороший показатель — подогрев жидкости на 3-5 градусов за 10-15 минут.
Нагреватель кавитационного типа представляет собой выгодную установку, за короткое время обогревает здание, к тому же максимально экономичен. При желании он легко конструируется в домашних условиях, для чего понадобятся доступные и недорогие приспособления.
ПоделитьсяПоделитьсяПоделитьсяКласснутьТвитнутьЗапинить
Сервисное обслуживание и ремонт оборудования котельных
Предыдущий Пост
Обзор полотенцесушителей и схема подключения
Следующий ПостСледующий Пост