1 минута чтение

Ремонт блока питания (своими руками): методика проверки неисправностей импульсного БП с ШИМ контроллером

Коротко об устройстве



Структура импульсного БП.

По сравнению с обычным БП, импульсник имеет достаточно сложную схемотехнику. Сетевое напряжение проходит через фильтр, выпрямляется и сглаживается. Постоянное напряжение поступает на инвертор, где из него транзисторными ключами «нарезаются» импульсы амплитудой около 300 вольт и частотой в несколько килогерц или десятков килогерц. Ключи управляются специальной схемой, выполненной в виде генератора.

Если источник нерегулируемый и нестабилизированный, то генератор просто формирует импульсы определенной частоты. Если нужна стабилизация и регулировка выходного напряжения, это делается способом широтно-импульсной модуляции (PWR, ШИМ). Импульсы следуют с постоянной частотой, а напряжение регулируется путем изменения их длины. Тем же способом можно ограничивать выходной ток, а также выполнить защиту от перегрузки или КЗ. С этой целью предусмотрены цепи регулировки (обратной связи) – постоянные или с возможностью оперативной настройки.

Преобразованные во вторичную обмотку импульсы выпрямляются обычным способом, проходят через сглаживающий фильтр и подаются потребителю. За счет высокой частоты преобразования, габариты импульсного трансформатора невелики. Также невелика емкость (и размеры) сглаживающих конденсаторов в выходном фильтре – за счет этого и получается выигрыш импульсника в массогабаритных показателях.

Более подробно здесь: Описание работы и устройство импульсного блока питания

Схемы сетевых фильтров импульсных и высокочастотных помех: 4 типа конструкций

Правило №2: у качественных ИБП в конструкции блока должен работать надежный фильтр в/ч сигналов.

Важно понимать, что импульсы высокой частоты играют двоякую роль:

  1. в/ч помехи могут приходить из бытовой сети в блок питания;
  2. импульсы высокочастотного тока генерируются встроенным преобразователем и выходят из него в домашнюю проводку.

Причины появления помех в бытовой сети:

  • апериодические составляющие переходных процессов, возникающие от коммутации мощных нагрузок;
  • работы близкорасположенных приборов с сильными электромагнитными полями, например, сварочных аппаратов, мощных тяговых электродвигателей, силовых трансформаторов;
  • последствия погашенных импульсов атмосферных разрядов и других факторов, включая наложение высокочастотных гармоник.

Помехи ухудшают работу радиоэлектронной аппаратуры, мобильных устройств и цифровых гаджетов. Их необходимо подавлять и блокировать внутри конструкции импульсного блока питания.

Основу фильтра составляет дроссель, выполненный двумя обмотками на одном сердечнике.

Дроссели фильтров

Дроссели могут быть выполнены разными габаритами, намотаны толстой или тонкой проволокой на больших или маленьких сердечниках.

Начинающему мастеру достаточно запомнить простое правило: лучше работает фильтр с дросселем большого магнитопровода, увеличенным числом витков и поперечным сечением проволоки. (Принцип: чем больше — тем и лучше.)

Дроссель обладает индуктивным сопротивлением, которое резко ограничивает высокочастотный сигнал, протекающий по проводу фазы или нуля. В то же время оно не оказывает особого влияния на ток бытовой сети.

Работу дросселя эффективно дополняют емкостные сопротивления.

Конденсаторы для ВЧ фильтров

Конденсаторы подобраны так, что закорачивают ослабленные дросселем в/ч сигналы помех, направляя их на потенциал земли.

Принцип работы фильтра в/ч помех от проникновения на блок питания входных сигналов показан на картинке ниже.

Как работает фильтр

Между потенциалами земли с нулем и фазой устанавливают Y конденсаторы. Их конструктивная особенность — они при пробое не способны создать внутреннее короткое замыкание и подать 220 вольт на корпус прибора.

Между цепями фазы и нуля ставят конденсаторы, способные выдерживать 400 вольт, а лучше — 630. Они обычно имеют форму параллепипеда.

Однако следует хорошо представлять, что ИБП в преобразователе напряжения сами выправляют сигнал и помехи им практически не мешают. Поэтому такая система актуальна для обычных аналоговых блоков со стабилизацией выходного сигнала.

Самодельный блок питания

У импульсного блока питания важно предотвратить выход в/ч помех в бытовую сеть. Эту возможность реализует другое решение.

Фильтр ВЧ помех

Как видите, принцип тот же. Просто емкостные сопротивления всегда располагаются по пути движения помехи за дросселем.

Фильтр ВЧ

Третья схема в/ч фильтра считается универсальной. Она объединила элементы первых двух. Y конденсаторы в ней просто работают с двух сторон каждого дросселя.

Универсальный фильтр

У самых дорогих и надежных устройств используется сложный фильтр с дополнительно подключенными дросселями и конденсаторами.

Сложный фильтр

Сразу же показываю схему расположения фильтров на всех цепочках блока питания: входе и выходе.

Схема фильтра

Обратите внимание, что на кабель, выходящий из ИБП и подключаемый к электронному прибору, может быть дополнительно установлен ферритовый фильтр, состоящий из двух разъемных полуцилиндров или выполненный цельной конструкцией.

Ферритовый фильтр

Примером его использования является импульсный блок питания ноутбука. Это уже четвертый вариант применения фильтра.

Ферритовый фильтр на кабеле

Сетевой выпрямитель напряжения: самая популярная конструкция

В ходе электрического преобразования форма синусоиды, состоящая из полуволн противоположных знаков, вначале меняется на сигнал положительного направления после диодной сборки, а затем эти пульсации сглаживаются до практически постоянной амплитудной величины 311 вольт.

Такой сетевой выпрямитель напряжения заложен в работу всех блоков питания.

С чего начать как найти нужную схему

Самый лучший вариант ремонта – если имеется схема на конкретный блок питания. На самом деле все несколько сложнее. Производители не прикладывают к документации на блоки питания принципиальных схем. Приходится их искать в интернете. Проблема в том, что даже известные изготовители не проявляют энтузиазма в выкладывании напоказ своих разработок, а небольшие фирмы из Юго-Восточной Азии вообще не имеют своих сайтов. Приходится собирать по всей сети то, что нашли и выложили энтузиасты. И если для компьютерных блоков питания схему найти относительно просто, то для импульсников, предназначенных, например, для питания LED-лент, дело обстоит сложнее.



ИИП SKS-320.

Так, для блока питания SKS-320 при запросе схемы известная поисковая система выдает только одну адекватную картинку (явно нарисованную добровольцем из Китая). На примере этого устройства далее и будет описан алгоритм поиска неисправности.



Принципиальная схема ИБП SKS-320.

Для других источников схемы может не найтись вовсе. В таком случае лучший выход – срисовать схему с платы самостоятельно. Это требует определенной квалификации – надо, как минимум, знать, как выглядят электронные компоненты, а также приблизительно представлять ожидаемый результат. Для этого надо знать, по какой схемотехнике выполняются блоки питания. В целях облегчения работы можно на плате пометить маркером дорожки питания и пронумеровать элементы (если они уже не пронумерованы).

Другой путь – найти подобную схему, которая может полностью и не совпасть с реальным блоком, но это лучше, чем ничего.

Читайте также



Импульсный блок питания – подборка схем для самостоятельного изготовления

Как стабилизировать электронный трансформатор

Стабилизация происходит с помощью фильтров в виде фильтрующих конденсаторов. Также можно применять обычные проводные стабилизаторы, предназначенные для электронных трансформаторов высокой частоты. Подключаются они через триггеры вторичной обмотки. Можно подсоединять высокочастотный электронный трансформатор. Схема подключения предполагает использование триггеров с вторичной обмоткой. Электронные лампы нагрузки устанавливают на реле, а отрицательное сопротивление увеличивают фильтрами.


Двухполярный БП без усилителя

Сделать блок питания из простейшего электронного трансформатора не так просто, так как нужно определить все его характеристики, на которые следует опираться при выборе конденсаторов, фильтров и диодов. Но, если строго следовать схеме, что-нибудь до получится.

Основные неисправности импульсного блока питания

Внешние проявления неисправности могут быть такими:

  • посторонний шум, запах дыма, горелой изоляции при включении (на холостом ходу или под нагрузкой);
  • импульсный блок питания при включении не запускается – нет индикации включения, отсутствует выходное напряжение (или все напряжения);
  • отсутствует одно из выходных напряжений (если у БП есть несколько каналов);
  • нестабильное выходное напряжение;
  • повышенное или пониженное напряжение на выходе.

Отдельно надо выделить неисправность, когда не включается вентилятор у блока с принудительным охлаждением. Сама по себе проблема на работоспособность не влияет, но в ближайшем будущем это может привести к перегреву и поломке.

Если наблюдается первая по списку проблема, блок питания надо немедленно обесточить и до устранения неисправности в сеть 220 вольт не включать.

Импульсный трансформатор: принцип работы одного импульса в 2 такта

Во время преобразования электрической энергии в магнитную и обратно в электрическую с пониженным напряжением обеспечивается гальваническое разделение первичных входных цепей с вторичной выходной схемой.

Каждый ШИМ импульс тока, поступающий при кратковременном открытии силового транзистора, протекает по замкнутой цепи первичной обмотки трансформатора.

Его энергия расходуется:

  1. вначале на намагничивание сердечника магнитопровода;
  2. затем на его размагничивание с протеканием тока по вторичной обмотке и дополнительной подзарядкой конденсатора.

По этому принципу каждый ШИМ импульс из первичной сети подзаряжает накопительный конденсатор.

Генераторы ИБП могут работать по простой однотактной или более сложной двухтактной технологии построения.

Однотактная схема импульсного блока питания: состав и принцип работы

На стороне 220 расположены: предохранитель, выпрямительный диодный мост, сглаживающий конденсатор, биполярный транзистор, цепочки колебательного контура и коллекторного тока, а также обмотки импульсного трансформатора.

Однотактная схема импульсного блока питания создается для передачи мощности 10÷50 ватт, не более. По ней изготавливают зарядные устройства мобильных телефонов, планшетов и других цифровых гаджетов.

В выходной цепочке трансформатора используется выпрямительный диод Д7. Он может быть включен в прямом направлении, как показано на картинке, или обратно, что важно учитывать.

При прямом включении импульсный трансформатор накапливает индуктивную энергию и передает ее в выходную цепь к подключенной нагрузке с задержкой по времени.

Если диод включен обратно, то трансформация энергии из первичной схемы во вторичную цепь происходит во время закрытого состояния транзистора.

Однотактная схема ИБП отмечается простотой конструкции, но большими амплитудами напряжения, приложенными к виткам первичной обмотки импульсного трансформатора.

Их защита осуществляется дополнительными цепочками из
резисторов R2÷R4 и конденсаторов С2, С3.

Двухтактная схема импульсного блока питания: 3 варианта исполнения

Более высокий КПД и пониженные потери мощности являются неоспоримыми преимуществами этих ИБП по сравнению с однотактными моделями.

Простейший вариант исполнения двухполупериодной методики показан на картинке.

Если в нее дополнительно подключить два диода и один сглаживающий конденсатор, то на этом же трансформаторе получается двухполярная схема.

Она распространена в усилителях мощности, работает по обратноходовому принципу. В ней через каждую емкость протекают меньшие токи, обеспечивающие повышенный ресурс конденсаторов при эксплуатации.

Прямоходовая схема блока питания имеет в своей конструкции дроссель, который выполняет функцию накопления энергии. Для этого два диода направляют поступающие импульсы ШИМ на его вход в одной полярности.

Дроссель этих устройств изготавливается большими габаритами и устанавливается отдельно внутри платы ИБП. Он дополняет работу накопительного конденсатора.

Это наглядно видно по верхней форме сигнала, показанного осциллограммой выпрямления одного и того же блока без дросселя и с ним.

Прямоходовая схема используется в мощных блоках питания, например, внутри компьютера.

В ней выпрямлением тока занимаются диоды Шоттки. Их применяют за счет:

  • уменьшенного падения напряжения на прямом включении;
  • и повышенного быстродействия во время обработки высокочастотных импульсов.

3 схемы силовых каскадов двухтактных ИБП

По порядку сложности их исполнения генераторы выполняют по:

  • полумостовому;
  • мостовому;
  • или пушпульному принципу построения выходного каскада.

Полумостовая схема импульсного блока питания: обзор

Конденсаторы С1, С2 собраны последовательно емкостным делителем. На него и переходы коллектор-эмиттер транзисторов Т1, Т2 подается напряжение постоянного питания.

К средней точке емкостного делителя и транзисторов подключена первичная обмотка трансформатора Тр2. С ее вторичной обмотки снимается выходное напряжение генератора, которое пропорционально входному сигналу ТР1, трансформируемому на базы Т1 и Т2.

Полумостовая схема ИБП работает для нагрузок от нескольких ватт до киловатт. Ее недостатком является возможность повреждения элементов при перегрузках, что требует использования сложных защит.

Мостовая схема импульсного блока питания: краткое пояснение

Вместо емкостного делителя предыдущей технологии здесь работают транзисторы T3 и T4. Они попарно открываются совместно с Т1 и Т2: (пара Т1-Т4), (пара Т2-Т3).

Напряжение переходов эмиттер-коллектор у закрытых транзисторов не выше величины питающего напряжения, а на обмотке w1 ТР3 оно возрастает до значения U пит. За счет этого увеличивается величина КПД.

Мостовая схема сложна в наладке из-за трудностей с настройкой цепей управления транзисторов Т1÷Т4.

Пушпульная схема: важные особенности

Первичная обмотка выходного ТР2 имеет средний вывод, на который подается плюсовой потенциал источника питания, а его минус — на среднюю точку вторичной обмотки Т1.

Во время прохождения одного полупериода колебания работает один из транзисторов Т1 или Т2 и соответствующая ему часть полуобмотки трансформатора.

Здесь создается самый высокий КПД, малые пульсации и низкие помехи. Амплитудное значение импульсного напряжения на любой половине обмотки w1 ТР2 достигает величины U пит.

К напряжению перехода коллектор-эмиттер каждого транзистора добавляется ЭДС самоиндукции, и оно возрастает до 2U пит. Поэтому Т1 и Т2 надо подбирать на 600÷700 вольт.

Пушпульная схема ключевого каскада пользуется большей популярностью. Она применяется в наиболее мощных преобразователях.

Что можно сделать из электронного трансформатора

Электротрансформаторы активно применяются в:

  • электросетях. Установка такого устройства поможет контролировать перепады напряжения и повышать уровень безопасности;
  • источниках питания. Электротрансформатор часто применяется для питания электрических приборов, преобразуя напряжение сети в то, которое необходимо для работы техники;
  • импульсивных и измерительных приборах. С их помощью измеряют переменный ток и напряжение, а также передают неискаженные импульсы напряжения.


Красным показана дополнительная плата



Как можно проверить ИБП

Если есть сомнения, можно проверить работу ИБП. Для этого его надо включить под нагрузкой – некоторые источники на холостом ходу просто не запускаются. В качестве эквивалента можно применить автомобильные лампочки, если блок рассчитан на выходное напряжение 12 вольт, или другие лампочки накаливания, соединяя их последовательно и параллельно для создания требуемой нагрузки. Если подходящих ламп нет, можно составить нагрузку из резисторов необходимого сопротивления и потребной мощности.



Лампочка в качестве нагрузки блока питания.

Для простой проверки работоспособности ток через лампы должен быть хотя бы 5..10% от номинала ИБП. Если источник с принудительным охлаждением, надо нагрузить его так, чтобы ток составил не менее половины максимально допустимого (а лучше – ближе к верхнему пределу). Это нужно, чтобы заставить сработать реле температуры для проверки включения вентилятора.

Преобразователь импульсного напряжения: объяснение простыми словами с поясняющими картинками

Силовой ключ выполняется первичной обмоткой высокочастотного трансформатора. Для эффективной трансформации в/ч импульсов до 100 килогерц конструкцию магнитопровода делают из альсифера или ферритов.

На обмотку трансформатора от цепей управления через в/ч транзистор поступают импульсы сигналов в несколько десятков килогерц.

Прямоугольные импульсы тока подаются по времени, чередуются с паузами, обозначаются единицей (1) и нулем (0).

Продолжительность протекания импульса или его ширина в каждый момент низкочастотного синусоидального напряжения соответствует его амплитуде: чем она больше, тем шире ШИМ. И наоборот.

ШИМ контроллер отслеживает величину подключенной нагрузки на выходе импульсного блока питания. По ее значению он вырабатывает импульсы, кратковременно открывающие силовой транзистор.

Если подключенная к ИБП мощность начинает возрастать, то схема управления увеличивает длительность импульсов управления, а когда она снижается, то — уменьшает.

За счет работы этой конструкции производится стабилизация напряжения на выходе блока в строго определенном диапазоне.










Выходной выпрямитель: самое популярное устройство

Правило №6: сигнал, поступающий с выхода ИБП, выпрямляется и сглаживается.

Простейшая схема выпрямителя, состоящая из диода и накапливающего конденсатора, показана картинкой ниже.

Простая схема выпрямителя

Она может дорабатываться подключением дополнительных конденсаторов, дросселей, элементов фильтров.