1 минута чтение

Расчет резистора для светодиода (калькулятор): формулы подбора гасящего сопротивления для 12в

Таблица напряжения светодиодов в зависимости от цвета

Рабочие напряжения светодиодов разные. Они зависят от материалов полупроводникового p-n перехода и связаны с длиной волны излучения света, т.е. оттенка цвета свечения.

Таблица номинальных режимов разных оттенков цвета для расчета гасящего сопротивления приведена ниже.

Цвет свеченияПрямое напряжение, В
Оттенки белого 3–3,7
Красный 1,6-2,03
Оранжевый 2,03-2,1
Желтый 2,1-2,2
Зеленый 2,2-3,5
Синий 2,5-3,7
Фиолетовый 2,8-4,04
Инфракрасный Не более 1,9
Ультрафиолетовый 3,1-4,4

Из таблицы видно, что на 3 вольта можно включать излучатели всех видов свечения, кроме устройств с белым оттенком, частично фиолетовых и всех ультрафиолетовых. Это вязано с тем, что нужно какую-то часть напряжения источника питания «израсходовать» на ограничение тока через кристалл.

При источниках питания 5, 9 или 12 В можно питать единичные диоды или последовательные их цепочки из 3 и 5-6 штук.

Последовательные цепочки снижают надежность устройств, в которых они используются, примерно в число раз, соответствующее количеству светодиодов. А параллельное включение повышает надежность в той же пропорции: 2 цепочки – в 2 раза, 3 – в 3 раза и т.д.

Но небывалая для источников света длительность их работы от 30-50 до 130-150 тысяч часов оправдывает падение надежности, т.к. от нее зависит срок службы устройства. Даже 30-50 тыс. часов работы по 5 часов в сутки – 4 часа вечером и 1 утром каждый день — это 16-27 лет работы. За это время большинство светильников морально устареет и будет утилизировано. Поэтому последовательное соединение широко используется всеми производителями светодиодных устройств.

Основные выводы

Приведенные выше формулы на практике необходимо корректировать. Даже в одной партии у светодиодов различные показатели. Чтобы получить точные результаты, в формулы желательно вставлять цифры, полученные при тестировании лед-лампочек.

Необходимо так же учесть температуру среды. Это значит, что для использования в помещениях расчеты проводятся не так, как для использования вне помещений. Если в схему включаются предохранители, учитывается так же их сопротивление. Ведь у любого электроприбора оно есть.

Предыдущая

СветодиодыКак выбрать лучшую светодиодную лампочку для дома

Следующая

СветодиодыКак своими руками сделать светодиодный светильник

План ОРУ по схеме №110-5Н в формате dwg

Что еще почитать:

Графический расчет.

При наличии вольт-амперной характеристики несложно определить сопротивление резистора графическим способом. Метод применяется редко, но полезно про него знать.

Для определения искомого сопротивления нужно знать ток нагрузки ILED и напряжение блока питания U. Далее следует перпендикуляр, соответствующий значению тока, до пересечения с вольт-амперной кривой. Затем через точку на графике и значению U провести прямую, которая покажет на оси тока максимальное его значение IMAX. Эти цифры подставляем в закон Ома (2) и вычисляем сопротивление резистора.

Например, ILED = 10 мА, а U = 5 В. По графику IMAX  примерно равна 25 мА.

По закону Ома (2) R = U / IMAX = 5 / 0,025 = 200 (Ом).

Примеры вычислений сопротивления для светодиода.

Разберем некоторые наглядные случаи вычисления сопротивления элемента в конкретных схемах.

Вычисление токоограничивающего сопротивления при последовательном соединении нескольких светодиодов.

Вычисление сопротивления при параллельном соединении светодиодов.

В этом случае постоянным сохраняется напряжение, а силы тока складываются. Поэтому при тех же входных данных (напряжение источника питания U = 12 В, напряжение и ток на диодах  ULED  = 2В, ILED = 10 мА), расчет будет несколько другим.

Используем формулу (4), учитывая три LED элемента.

R = (U – ULED) /3* I.

R = (12 – 2) / 3*0,01 = 333,3 (Ом).

Мощность рассеивания (5) составит: Р = (12 – 2) * 3*0,01 = 0,3 (Вт).

Однако данное подключение не стоит применять на практике. Даже светодиоды из одной партии не гарантируют одинакового падения напряжений. Из-за этого ток на отдельном LED элементе может превысить допустимый, что может спровоцировать выход элементов из строя.

Для параллельного соединения светодиодов необходимо к каждому из них подключать свой резистор.

Практика

Рассмотрим несколько конкретный пример расчета.

Исходные данные: напряжение питания 12В, белый светодиод XPE (CREE) требуется включить на номинальный ток 350 мА согласно схеме, представленной на рисунке 1.

Находим в data sheet значение прямого падения напряжения при токе 350 мА (рисунок 4).

Рисунок 4

Типовое значение по таблице — 3,2 вольта. Максимальное значение может достигать 3,9 вольт. То есть в результате производственного процесса может получиться как светодиод с прямым напряжением 3,2 В так и 3,9 В (или любым другим промежуточным значением), но вероятность получения 3,2 вольт наиболее высока (если хотите – это «математическое ожидание» этой величины). По этой причине в расчет обычно берется типовое значение.

Используя формулу (3) и калькулятор получаем:

R=(12-3,2)/0,35»25,1 Ом.

Ближайшее значение из ряда Е24 – 24 Ом. Значение тока при этом сопротивлении получится 367 мА, что на 5% превышает требуемое значение. Если учесть еще и допуск на номинал резистора, который для ряда Е24 также 5%, то в худшем случае получается вообще 386 мА. Если такое отклонение не допустимо, то можно добавить в цепь последовательно еще один резистор номиналом 1 Ом. Все эти действия рекомендуется сопровождать реальными измерениями сопротивлений резисторов и получающихся токов, иначе ни о какой точности не может идти и речи. Резистор 24 Ом может иметь погрешность в сторону увеличения до 25,2 Ом, добавив 1 Ом, получим 26, 2 и «перекос» силы тока через светодиод в противоположную сторону.

Предположим, что нам не нужна высокая точность задания тока и резистор 24 Ом нас устраивает.

Определим мощность, которая будет рассеиваться на резисторе по формуле (4):

P=0,3672×24»3,2 Вт.

Номинальная мощность рассеяния резистора должна быть с запасом не менее 30%, иначе он будет перегреваться. А если условия отвода тепла затруднены (например, в корпусе плохая конвекция), то запас должен быть еще больше.

В итоге выбираем резистор мощностью 5 Вт с номинальным сопротивлением 24 Ом.

Для того чтобы оценить эффективность получившегося светотехнического устройства необходимо рассчитать КПД схемы питания:

Таким образом, КПД подобной схемы питания составляет всего 27%. Такая низкая эффективность обусловлена слишком высоким питающим напряжением 12 вольт, а точнее разницей между U и ULED. Получается, что 8,8 вольт мы вынуждены «гасить» на резисторе за счет бесполезного рассеяния мощности в окружающее пространство. Для повышения КПД требуется либо снизить напряжения питания, либо найти светодиод с большим прямым напряжением. Как вариант можно включить несколько светодиодов последовательно, выполнив подбор таким образом, чтобы суммарное падение было ближе к напряжению питания, но ни в коем случае не превышало его.

Необходимое значение сопротивления для резистора можно и подобрать, если имеется в наличии магазин сопротивлений и амперметр. Включаем магазин и амперметр в цепь последовательно светодиоду (на место предполагаемого резистора), устанавливаем максимальное значение сопротивления и подключаем к источнику напряжения. Далее начинаем уменьшать значение сопротивления до тех пор, пока сила тока не достигнет нужного значения или светодиод нужной яркости (в зависимости от того, что будет являться критерием). Останется только считать значение сопротивления с магазина и выполнить подбор ближайшего номинала.

Определения и формулы для расчета

Одиночный светодиод

Светодиод (светоизлучающий диод) — полупроводниковый источник излучения в оптическом диапазоне с двумя или более выводами. Монохромные светодиоды обычно имеют два вывода, двухцветные — два или три вывода, трехцветные снабжены четырьмя выводами. Светодиод излучает свет, если к его вывода приложено определенное прямое напряжение.

Обычный инфракрасный светодиод и его условное обозначение на принципиальных схемах (на российских принципиальных схемах светодиоды изображают без разрыва проводника). Квадратный кристалл светодиода установлен на отрицательном электроде (катоде). К положительному электроду (аноду) кристалл подключается с помощью тонкого проводника.
Обычный инфракрасный светодиод и его условное обозначение на принципиальных схемах (на российских принципиальных схемах светодиоды изображают без разрыва проводника). Квадратный кристалл светодиода установлен на отрицательном электроде (катоде). К положительному электроду (аноду) кристалл подключается с помощью тонкого проводника.

Для подключения светодиода к источнику питания можно использовать простую схему с последовательно включенным токоограничительным резистором. Резистор необходим в связи с тем, что падение напряжение на светодиоде является постоянным в относительно широком диапазоне рабочих токов.

Цвета светодиодов, материал полупроводника, длина волны и падение напряжения
Цвет Материал полупроводника Длина волны Падение напряжения
Инфракрасный Арсенид галлия (GaAs) 850-940 нм
Красный Арсенид-фосфид галлия (GaAsP) 620-700 нм 1.6—2.0 В
Оранжевый Арсенид-фосфид галлия (GaAsP) 590-610 нм 2.0—2.1 В
Желтый Арсенид-фосфид галлия (GaAsP) 580-590 нм 2.1—2.2 В
Зеленый Фосфид алюминия-галлия (AlGaP) 500-570 нм 1.9—3.5 В
Синий Нитрид индия-галлия (InGaN) 440-505 нм 2.48—3.6 В
Белый Диоды с люминофором или трехцветные RGB Широкий спектр 2.8—4.0 В

Поведение светодиодов и резисторов в схемах отличается. В соответствии с законом Ома, резисторы имеют линейную зависимость падения напряжения от протекающего через них тока:

Вольтамперные характеристики типичных светодиодов различных цветов

Если напряжение на резисторе увеличивается, ток также пропорционально увеличивается (здесь мы предполагаем, что величина сопротивления резистора остается постоянной). Светодиоды ведут себя не так. Их поведение соответствует поведению обычных диодов. Вольтамперные характеристики светодиодов разного цвета приведены на рисунке. Они показывают, что ток через светодиод не прямо пропорционален падению напряжения на светодиоде. Видно, что имеется экспоненциальная зависимость тока от прямого напряжения. Это означает, что при небольшом изменении напряжения ток может измениться очень сильно.

Если прямое напряжение на светодиоде невелико, его сопротивление очень большое и светодиод не горит. При превышении указанного в технических характеристиках порогового уровня светодиод начинает светиться и его сопротивление быстро падает. Если приложенное напряжение превышает рекомендуемую величину прямого напряжения, которое может быть в пределах 1,5—4 В для светодиодов различных цветов, ток через светодиод резко растет, что может привести к выходу его из строя. Для ограничения этого тока, последовательно со светодиодом включают резистор, который ограничивает ток таким образом, что он не превышал рабочий ток, указанный в характеристиках светодиода.

Формулы для расчетов

Светодиод в прямоугольном корпусе с плоским верхом применяется, например, для индикаторов уровня

Ток через ограничительный резистор R

s можно рассчитать по формуле закона Ома, в которой из напряжения питания
V
s вычитается прямое падение напряжения на светодиоде
V
f:

Здесь V

s напряжение источника питания в вольтах (например, 5 В от шины USB),
V
f прямое падение напряжения на светодиоде и
I
прямой ток через светодиод в амперах. Значения
V
f и
I
f приводятся в технических характеристиках светодиода. Типичные значения
V
f показаны выше в таблице. Типичный ток индикаторных светодиодов 20 мА.

После расчета сопротивления резистора, из ряда номиналов сопротивлений выбирается ближайшее большее стандартное значение. Например, если расчет показывает, что нужен резистор R

s = 145 ом, мы (и калькулятор) выберем резистор
R
s = 150 ом.

Токоограничительный резистор рассеивает определенную мощность, которая рассчитывается по формуле

Оранжевые светодиоды обычно используются в маршрутизаторах для указания скорости обмена 10/100 Мбит/с. Зеленые светодиоды горят при скорости 1000 Мбит/с
Оранжевые светодиоды обычно используются в маршрутизаторах для указания скорости обмена 10/100 Мбит/с. Зеленые светодиоды горят при скорости 1000 Мбит/с

Для надежной работы резистора его мощность выбирается вдвое выше расчетой. Например, если по формуле получилось 0,06 Вт, мы выберем резистор на 0,125 Вт.

А теперь рассчитаем эффективность работы нашей схемы (ее КПД), который покажет какой процент мощности, отдаваемой источником питания, потребляется светодиодом. На светодиоде рассеивается такая мощность:

Тогда общее потребление будет равно

КПД схемы включения светодиода с ограничительным резистором:

Для выбора источника питания необходимо рассчитать ток, который он должен отдавать в схему. Это делается по формуле:

Светодиодная лента со светодиодами типа 5050; цифры 50 и 50 означают длину и ширину микросхемы в миллиметрах; токоограничительные резисторы 150 ом уже установлены на ленте последовательно со светодиодами
Светодиодная лента со светодиодами типа 5050; цифры 50 и 50 означают длину и ширину микросхемы в миллиметрах; токоограничительные резисторы 150 ом уже установлены на ленте последовательно со светодиодами

Подбор резисторов по цветовой маркировке онлайн

Сопротивление:

На заметку! В приведенном выше примере на токоограничительном сопротивлении рассеивается почти в три раза больше энергии, чем на светодиоде. Это означает, что с учетом световой отдачи LED, КПД нашей конструкции меньше 25%.

Чтобы снизить потери энергии лучше применить источник с более низким напряжением. Например, для питания можно применить преобразователь постоянного напряжения AC/AC 12/5 вольт. Даже с учетом КПД преобразователя потери будут значительно меньше.

Зачем нужен резистор для светодиода

Использование ограничительных резисторов при включении светодиодов является пусть и не самым эффективным, зато самым простым и дешевым решением ограничить ток в допустимых пределах. Схемные решения, которые позволяют с высокой точностью стабилизировать ток в цепи излучателей достаточно сложны для повторения, а готовые имеют высокую стоимость.

Читайте также:  Правильная организация освещения на кухне: правила и требования, декоративные идеи

Применение резисторов позволяет выполнять освещение и подсветку своими силами. Главное при этом — умение пользоваться измерительными приборами и минимальные навыки пайки. Грамотно рассчитанный ограничитель с учетом возможных допусков и колебаний температуры способен обеспечить нормальное функционирование светодиодов в течении всего заявленного срока службы при минимальных затратах.

Watch this video on YouTube
Как правильно рассчитать резистор для светодиода?

Онлайн калькулятор для расчета светодиодов

Для автоматического расчета понадобятся следующие данные:

  • напряжение источника или блока питания, В;
  • номинальное прямое напряжение устройства, В;
  • прямой номинальный рабочий ток, мА;
  • количество светодиодов в цепочке или включенных параллельно;
  • схема подключения светодиода(ов).

Исходные данные можно взять из паспорта диода.

После введения их в соответствующие окна калькулятора нажмите на кнопку «Рассчитать» и получите номинальное значение резистора и его мощность.

Тип соединения Один
светодиод
Последовательное
соединение
Параллельное
соединение
Напряжение питания Вольт
Прямое напряжение светодиода Вольт
Ток через светодиод Милиампер
Количество светодиодов шт.
Точное значение резистора Ом
Стандартное значение резистора Ом
Минимальная мощность резистора Ватт
Общая потребляемая мощность Ватт

Параллельное и последовательное включение светодиодов

С целью совмещения параметров цепей питания и характеристик светодиодов широко распространены последовательное и параллельное соединение нескольких элементов. У каждого типа соединений есть как достоинства, так и недостатки.

Параллельное включение

Достоинством такого соединения является использование всего одного ограничителя на всю цепь. Следует оговориться, что данное достоинство является единственным, поэтому параллельное соединение практически нигде не встречается, за исключением низкосортных промышленных изделий. Недостатки таковы:

  1. Мощность рассеивания на ограничительном элементе растет пропорционально количеству параллельно включенных светодиодов.
  2. Разброс параметров элементов приводит к неравномерности распределения токов.
  3. Перегорание одного из излучателей ведет к лавинообразному выходу из строя всех остальных ввиду увеличения падения напряжения на параллельно включенной группе.

Несколько увеличивает эксплуатационные свойства соединение, где ток через каждый излучающий элемент ограничивается отдельным резистором. Точнее, это является параллельным соединением отдельных цепей, состоящих из светодиодов с ограничительными резисторами. Основное достоинство — большая надежность, поскольку выход из строя одного или нескольких элементов никаким образом не отражается на работе остальных.

Недостатком является тот факт, что из-за разброса параметров светодиодов и технологического допуска на номинал сопротивлений яркость свечения отдельных элементов может сильно различаться. Такая схема содержит большое количество радиоэлементов.

Параллельное соединение с индивидуальными ограничителями находит применение в цепях с низким напряжением, начиная с минимального, ограниченного падением напряжения на p-n переходе.

parallelnoe-podkluchenie-svetodioda

Последовательное включение

Последовательное включение излучающих элементов получило самое широкое распространение, поскольку несомненным достоинством последовательной цепи является абсолютное равенство тока, проходящего через каждый элемент. Поскольку ток через единственный ограничительный резистор и через диод одинаков, то и рассеиваемая мощность будет минимальной.

Читайте также:  Как правильно расположить точечные светильники на натяжном потолке

Существенный недостаток — выход из строя хотя бы одного из элементов приведет к неработоспособности всей цепочки. Для последовательного соединения требуется повышенное напряжение, минимальное значение которого растет пропорционально количеству включенных элементов.

poaledovatelnoe-podkluchenie-svetodioda

Смешанное включение

Использование большого количества излучателей возможно при выполнении смешанного соединения, когда используют несколько параллельно включенных цепочек, и последовательного соединения одного ограничительного резистора и нескольких светодиодов.

Перегорание одного из элементов приведет к неработоспособности только одной цепи, в которой установлен данный элемент. Остальные будут функционировать исправно.

В каких случаях допускается подключение светодиода через резистор?

Подключать светодиод через резистор можно, если вопрос эффективности схемы не является первостепенным. Например, использование светодиода в роли индикатора для подсветки выключателя или указателя сетевого напряжения в электроприборах. В подобных устройствах яркость не важна, а мощность потребления не превышает 0,1 Вт. Подключая светодиод с потреблением более 1 Вт, нужно быть уверенным в том, что блок питания выдаёт стабилизированное напряжение.

Если входное напряжение схемы не стабилизировано, то все помехи и скачки будут передаваться в нагрузку, нарушая работу светодиода. Ярким примером служит автомобильная электрическая сеть, в которой напряжение на аккумуляторе только теоретически составляет 12 В. В самом простом случае делать светодиодную подсветку в машине следует через линейный стабилизатор из серии LM78XX. А чтобы хоть как-то повысить КПД схемы, включать нужно по 3 светодиода последовательно. Также схема питания через резистор востребована в лабораторных целях для тестирования новых моделей светодиодов. В остальных случаях рекомендуется использовать стабилизатор тока (драйвер). Особенно тогда, когда стоимость излучающего диода соизмерима со стоимостью драйвера. Вы получаете готовое устройство с известными параметрами, которое остаётся лишь правильно подключить.

Когда следует подключать светодиод через резистор

Существует несколько случаев, когда такая электрическая схема уместна. Во-первых, токоограничивающий резистор стоит использовать, если эффективность схемы не первоочередная задача. В качестве примера можно привести применение светодиода в качестве индикатора в приборах. В таком случае важно самом свечение, а не его яркость.

Во-вторых, применение резистора оправдано в случаях, когда необходимо выяснить полярность и работоспособность LED элемента. Одним из методов является подключение прибора к блоку питания. В этом качестве часто используют аккумуляторы от мобильных телефонов или батарейки. Напряжение на них может достигать 12 В. Это очень высокая величина, и прямое подключение светодиода приведет к поломке. Для ограничения напряжения в цепь вставляют резистор.

В-третьих, резистор используют в исследовательских целях для изучения работы новых образцов светодиодов.

В других случаях можно воспользоваться драйвером – прибором, стабилизирующим ток.

Расчет резистора при подключении нескольких светодиодов

Подключить несколько led можно двумя способами: последовательно и параллельно. Схемы включения показаны ниже. Не забудьте почитать более подробно про способы подключения светодиодов.

схемы подключения нескольких светодиодов

При последовательном соединении используется один резистор, задающий одинаковый ток всей цепочке led. При этом следует учитывать, что источник питания должен обеспечивать напряжение, превышающее общее падение напряжения на диодах. То есть при соединении 4 светодиодов с падением 2.5 В потребуется источник напряжением более 10 В. Ток при этом для всех будет одинаковым. Сопротивление резистора в этом случае можно рассчитать по формуле:

где  — напряжение питания,

— сумма падений напряжения на светодиодах,

— ток потребления.

Так, 4 зеленых светодиода Kingbright L-132XGD напряжением 2.5 В и током 10 мА при питании 12 В потребуют резистора сопротивлением

При этом он должен рассеивать мощность

При параллельном подключении каждому светоизлучающему диоду ток ограничивает свой резистор. В таком случае можно использовать низковольтный источник питания, но ток потребления всей цепи будет складываться из токов, потребляемых каждым светодиодом. Например, 4 желтых светодиода BL-L513UYD фирмы Betlux Electronics с потреблением 20 мА каждый, потребуют от источника ток не менее 80 мА при параллельном включении. Здесь сопротивление и мощность резисторов для каждой пары «резистор – led» рассчитываются так же, как при подключении одиночного светодиода.

Обратите внимание, что и при последовательном, и при параллельном соединении используются источники питания одинаковой мощности. Только в первом случае потребуется источник с большим напряжением, а во втором – с большим током.

Нельзя подключать параллельно несколько светодиодов к одному резистору, т.к. либо они все будут гореть очень тускло, либо один из них может открыться чуть раньше других, и через него пойдет очень большой ток, который выведет его из строя.

как не стоит подключать светодиод

Примеры расчетов сопротивления и мощности резистора

Чтобы помочь новичкам сориентироваться, приведем пару практических примеров расчета сопротивления для светодиодов.

Cree XM–L T6

В первом случае проведем вычисление резистора, необходимого для подключения мощного светодиода Cree XM–L к источнику напряжения 5 В. Cree XM–L с бином T6 имеет такие параметры: типовое ULED = 2,9 В и максимальное ULED = 3,5 В при токе ILED=0,7 А. В расчёты следует подставлять типовое значение ULED, так как. оно чаще всего соответствует действительности. Рассчитанный номинал резистора присутствует в ряду Е24 и имеет допуск в 5%. Однако на практике часто приходится округлять полученные результаты к ближайшему значению из стандартного ряда. Получается, что с учетом округления и допуска в 5% реальное сопротивление изменяется и вслед за ним обратно пропорционально меняется ток. Поэтому, чтобы не превысить рабочий ток нагрузки, необходимо расчётное сопротивление округлять в сторону увеличения.
Используя наиболее распространённые резисторы из ряда Е24, не всегда удаётся подобрать нужный номинал. Решить эту проблему можно двумя способами. Первый подразумевает последовательное включение добавочного токоограничительного сопротивления, который должен компенсировать недостающие Омы. Его подбор должен сопровождаться контрольными измерениями тока.

Второй способ обеспечивает более высокую точность, так как предполагает установку прецизионного резистора. Это такой элемент, сопротивление которого не зависит от температуры и прочих внешних факторов и имеет отклонение не более 1% (ряд Е96). В любом случае лучше оставить реальный ток немного меньше от номинала. Это не сильно повлияет на яркость, зато обеспечит кристаллу щадящий режим работы.

Мощность, рассеиваемая резистором, составит:

Рассчитанную мощность резистора для светодиода обязательно следует увеличить на 20–30%.

Вычислим КПД собранного светильника:

Пример с LED SMD 5050

По аналогии с первым примером разберемся, какой нужен резистор для SMD светодиода 5050. Здесь нужно учесть конструкционные особенности светодиода, который состоит из трёх независимых кристаллов.
Если LED SMD 5050 одноцветный, то прямое напряжение в открытом состоянии на каждом кристалле будет отличаться не более, чем на 0,1 В. Значит, светодиод можно запитать от одного резистора, объединив 3 анода в одну группу, а три катода – в другую. Подберем резистор для подключения белого SMD 5050 с параметрами: типовое ULED=3,3 В при токе одного чипа ILED=0,02 А.

Читайте также:  Содержание цветных металлов в радиодеталях

Ближайшее стандартное значение – 30 Ом.

Принимаем к монтажу ограничительный резистор мощностью 0,25 Вт и сопротивлением в 30 Ом ±5%.

У RGB светодиода SMD 5050 различное прямое напряжение каждого кристалла. Поэтому управлять красным, зелёным и синим цветом, придётся тремя резисторами разного номинала.

Можно ли обойтись без резисторов?

Действительно, в некоторых случаях можно не использовать токоограничивающий резистор. Рассмотренный нами светодиод можно напрямую запитать от двух батареек 1,5В. Так как его рабочее напряжение составляет 3,2В, то протекающий через него ток будет меньше номинального и балласт ему не потребуется. Конечно, при таком питании светодиод не будет выдавать полный световой поток.

Иногда в цепях переменного тока в качестве токоограничивающих элементов вместо резисторов применяют конденсаторы (подробнее про расчет конденсатора). В качестве примера можно привести выключатели с подсветкой, в которых конденсаторы являются «безваттными» сопротивлениями.

Оцените, пожалуйста, статью. Мы старались:)

Понравилась статья? Расскажите о ней! Вы нам очень поможете:)

Как подобрать резистор для одиночного светодиода

Для ограничения тока светоизлучающего диода можно использовать резистор, включенный таким образом:

схема подключения светодиода через резистор

Теперь определяем, какой резистор нужен. Для расчета сопротивления используется формула:

формула расчета сопротивления

где U пит  — напряжение питания,

U пад- падение напряжения на светодиоде,

I — требуемый ток светодиода.

При этом мощность, рассеиваемая на резисторе, будет пропорциональна квадрату тока:

формула мощности

Например, для красного светодиода Cree C503B-RAS типовое падение напряжения составляет 2.1 В при токе 20 мА. При напряжении питания 12 В сопротивление резистора будет составлять

пример расчета сопротивления

Из стандартного ряда сопротивлений Е24 подбираем наиболее близкое значение номинала – 510 Ом. Тогда мощность, рассеиваемая на резисторе, составит

пример расчета мощности светодиода

Таким образом, потребуется гасящий резистор номиналом 510 Ом и мощностью рассеивания 0.25 Вт.

Может сложиться впечатление, что при низких напряжениях питания можно подключать led без резистора. На этом видео наглядно показано, что произойдет со светоизлучающим диодом, включенного таким образом, при напряжении всего 5 В:

Светодиод сначала будет работать, но через несколько минут просто перегорит. Это вызвано нелинейным характером его ВАХ, о чем говорилось в начале статьи.

Никогда не подключайте светодиод без гасящего резистора даже при низком напряжении питания. Это ведет к его выгоранию и, в лучшем случае, к обрыву цепи, а в худшем – к короткому замыканию.

Основные параметры

Отличие характеристик кристаллов для дешевых ЛЕД
Отличие характеристик кристаллов для дешевых ЛЕД

Так же при расчёте светодиодов следует учитывать разброс параметров, для дешевых они будут максимальны, для дорогих они будут более одинаковыми.  Чтобы проверить этот параметр, необходимо включить их в равных условиях, то есть последовательно. Уменьшая тока или напряжение снизить яркость до слегка светящихся точек. Визуально вы сможете оценить, некоторые будут светится ярче, другие тускло.  Чем равномернее они горят, тем меньше разброс. Калькулятор расчёта резистора для светодиода подразумевает, что характеристики светодиодных чипов идеальные, то есть отличие равно нулю.

Напряжение падения для распространенных моделей маломощных до 10W может быть от 2В до 12В. С ростом мощности увеличивается количество кристаллов в COB  диоде, на каждом есть падение. Кристаллы включаются цепочками последовательно, затем они объединяются в параллельные цепи. На мощностях от  10W до 100W снижение растёт с 12В до 36В.

Этот параметр должен быть указан в технических характеристиках LED чипа  и зависит от назначения:

  • цвета синий, красный, зелёный, желтый;
  • трёхцветный RGB;
  • четырёхцветный RGBW;
  • двухцветный, теплый и холодный белый.

Светодиод как нелинейный элемент

Размеры резисторов до 2 Вт
Рассмотрим семейство вольт-амперных характеристик (ВАХ) для светодиодов различных цветов. Эта характеристика показывает зависимость тока, проходящего через светоизлучающий диод, от напряжения, приложенного к нему. Как видно на рисунке, характеристики имеют нелинейный характер.

Это означает, что даже при небольшом изменении напряжения на несколько десятых долей вольта, ток может измениться в несколько раз. Однако при работе со светодиодами обычно используют наиболее линейный участок (т.н. рабочую область) ВАХ, где ток изменяется не так резко. Чаще всего производители указывают в характеристиках светодиода положение рабочей точки, то есть значения напряжения и тока, при которых достигается заявленная яркость свечения.

Представленные выше характеристики были получены для светоизлучающих диодов, включенных в прямом направлении. То есть отрицательный полюс питания подключен к катоду, а положительный – к аноду

Вычисление светодиодного резистора с использованием Закон Ома

Закон Ома гласит, что сопротивление резистора R = V / I, где V = напряжение через резистор (V = S – V L в данном случае), I = ток через резистор. Итак R = (V S – V L) / I. Если вы хотите подключить несколько светодиодов сразу – это можно сделать последовательно. Это сокращает потребление энергии и позволяет подключать большое количество диодов одновременно, например в качестве какой-то гирлянды. Все светодиоды, которые соединены последовательно, долдны быть одного типа. Блок питания должен иметь достаточную мощность и обеспечить соответствующее напряжение.

Будет интересно➡ Что такое терморезистор?

Пример расчета: Красный, желтый и зеленый диоды – при последовательном соединении необходимо напряжение питания – не менее 8V, так 9-вольтовая батарея будет практически идеальным источником. V L = 2V + 2V + 2V = 6V (три диода, их напряжения суммируются). Если напряжение питания V S 9 В и ток диода = 0.015A, Резистором R = (V S – V L) / I = (9 – 6) /0,015 = 200 Ом. Берём резистор 220 Ом (ближайшего стандартного значения, которое больше).

Избегайте подключения светодиодов в параллели!

Расчет величины резистора-токоограничителя

На практике используют два вида расчета – графический, по ВАХ – вольтамперной характеристике конкретного диода, и математический – по его паспортным данным.

Как рассчитать резистор для светодиодов - формулы с примерами + онлайн калькулятор
Как рассчитать резистор для светодиодов - формулы с примерами + онлайн калькулятор
Принципиальная электрическая схема подключения излучателя к источнику питания.

На рисунке:

  • Е – источник питания, имеющий на выходе величину Е;
  • «+»/«–» – полярность подключения светодиода: «+» – анод, на схемах показывается треугольником, «-» – катод, на схемах – поперечная черточка;
  • R – токоограничивающее сопротивление;
  • Uled – прямое, оно же рабочее напряжение;
  • I – рабочий ток через прибор;
  • напряжение на резисторе обозначим как UR.

Тогда схема для расчета примет вид:

схема для расчета резистора
схема для расчета резистора
Схема для расчета резистора.

Рассчитаем сопротивление для ограничения тока. Напряжение U в цепи распределится так:

U = UR + Uled или UR + I × Rled, в вольтах,

где Rled– внутреннее дифференциальное сопротивление p-n перехода.

Математическими преобразованиями получаем формулу:

R = (U-Uled)/I, в Ом.

Величину Uled можно подобрать из паспортных значений.

Проведем расчет величины токоограничивающего резистора для LED производства компании Cree модели Cree XM–L, имеющий бин T6.

Его паспортные данные: типовое номинальное ULED = 2,9 В, максимальное ULED = 3,5 В, рабочий ток ILED=0,7 А.

Для расчета используем ULED = 2,9 В.

R = (U-Uled)/I = (5-2,9)/0,7 = 3 Ом.

Рассчитанная величина равна 3 Ом. Выбираем элемент с допуском точности ± 5%. Этой точности с избытком хватит чтобы установить рабочую точку на 700 мА.

Округлять величину сопротивления следует в большую сторону. Это уменьшит ток, световой поток диода и повысит надежность работы более щадящим тепловым режимом кристалла.

Рассчитаем требуемую мощность рассеивания для этого резистора:

P = I² × R = 0,7² × 3 = 1,47 Вт

Для надежности округлим ее до ближайшей большей величины – 2 Вт.

Схемы последовательного и параллельного включения LED широко используются и показывают особенности этих видов соединения. Последовательное включение одинаковых элементов делит напряжение источника поровну между ними. При разных внутренних сопротивлениях – пропорционально сопротивлениям. При параллельном соединении напряжение одинаковое, а ток – обратно пропорционален внутренним сопротивлениям элементов.

При последовательном соединении LED

При последовательном соединении первый в цепочке диод анодом соединен с «+» источника питания, а катодом – с анодом второго диода. И так до последнего в цепочке, катод которого соединен с «-» источника. Ток в последовательной цепи один и тот же во всех ее элементах. Т.е. через любой световой прибор он одной и той же величины. Внутреннее сопротивление открытого, т.е. излучающего свет кристалла, составляет десятки или сотни ом. Если через цепочку течет 15-20 мА при сопротивлении 100 Ом, то на каждом элементе будет по 1,5-2 В. Сумма напряжений на всех приборах должна быть меньше, чем у источника питания. Разницу обычно гасят специальным резистором, который выполняет две функции:

  • ограничивает номинальный рабочий ток;
  • обеспечивает номинальное прямое напряжение на светодиоде.

Читайте также



Подключение светодиода к 12 вольтам

При параллельном соединении

Параллельное включение может быть выполнено двумя способами.

 схема параллельного соединения
 схема параллельного соединения
Электрическая схема параллельного соединения.

Верхняя картинка показывает как включать не желательно. При таком подключении одно сопротивление обеспечит равенство токов только при идеальных кристаллах и одинаковой длине подводящих проводников. Но разброс параметров полупроводниковых приборов при изготовлении не позволяет сделать их одинаковыми. А подбор одинаковых – резко увеличивает цену. Разница может достигать 50-70% и более. Собрав конструкцию, получите разницу в свечении не менее 50-70%. Кроме того, выход из строя одного излучателя изменит работу всех: при обрыве цепи один погаснет, остальные станут светить ярче на 33% и станут больше греться. Перегрев будет способствовать их деградации – изменению оттенка свечения и уменьшению яркости.

В случае короткого замыкания в результате перегрева и сгорания кристалла возможен выход из строя токоограничивающего сопротивления.

Нижний вариант позволяет задать нужную рабочую точку любого диода даже при их разной номинальной мощности.

See the source image
See the source image

Схема последовательно-параллельного соединения устройств
Схема последовательно-параллельного соединения устройств
Схема последовательно-параллельного соединения устройств.

На напряжение 4,5 В последовательно подсоединяют по три LED-элемента и одно токоограничивающее сопротивление. Получившиеся цепочки соединяют параллельно. Через каждый диод течет 20 мА, а через все вместе – 60 мА. На каждом из них получается меньше, чем 1,5 В, а на токоограничителе – не менее, чем 0,2-0,5 В. Интересно, что если использовать источник питания 4,5 В, то с ним работать смогут только инфракрасные диоды с прямым напряжением менее 1,5 В, или нужно увеличивать питание хотя бы до 5 В.

Последовательное соединение светодиодов

Часто несколько светодиодов подключают последовательно к одному источнику напряжения. При последовательном соединении одинаковых светодиодов их общий ток потребления равняется рабочему току одного светодиода, а общее напряжение равно сумме напряжений падения всех светодиодов в цепи.

Поэтому, в данном случае, нам достаточно использовать один резистор для всей последовательной цепочки светодиодов.

Пример расчета сопротивления резистора при последовательном подключении.

В этом примере два светодиода соединены последовательно. Один красный светодиод с напряжением 2В и один ультрафиолетовый светодиод с напряжением 4,5В. Допустим, оба имеют номинальную силу тока 30 мА.

Из правила Кирхгофа следует, что сумма падений напряжения во всей цепи равна напряжению источника питания. Поэтому на резисторе напряжение должно быть равно напряжению источника питания минус сумма падения напряжений на светодиодах.

Используя закон Ома, вычисляем значение сопротивления ограничительного резистора:

Резистор должен иметь значение не менее 183,3 Ом.

Обратите внимание, что после вычитания падения напряжений у нас осталось еще 5,5 вольт. Это дает возможность подключить еще один светодиод (конечно же, предварительно пересчитав сопротивление резистора)