2 минут чтения

Принцип работы диодов для чайников — его устройство и назначение

Устройство

устройство диода

Читайте также:  Линейные контактора тягового двигателя

Ниже приводится подробное описание устройства диода, изучение этих сведений необходимо для дальнейшего понимания принципов действия этих элементов:

  1. Корпус представляет собой вакуумный баллон, который может быть изготовлен из стекла, металла или прочных керамических разновидностей материала.
  2. Внутри баллона имеется 2 электрода. Первый является накаленным катодом, который предназначен для обеспечения процесса эмиссии электронов. Самый простейший по конструкции катод представляет собой нить с небольшим диаметром, которая накаливается в процессе функционирования, но на сегодняшний день более распространены электроды косвенного накала. Они представляют собой цилиндры, изготовленные из металла, и обладающие особым активным слоем, способным испускать электроны.
  3. Внутри катодакосвенного накала имеется специфический элемент – проволока, которая накаливается под воздействием электрического тока, она называется подогреватель.
  4. Второй электрод является анодом, он необходим для приема электронов, которые были выпущены катодом. Для этого он должен обладать положительным относительно второго электрода потенциалом. В большинстве случаев анод также имеет цилиндрическую форму.
  5. Оба электрода вакуумных приборов полностью идентичны эмиттеру и базе полупроводниковой разновидности элементов.
  6. Для изготовления диодного кристалла чаще всего используется кремний или германий. Одна из его частей является электропроводимой по p-типу и имеет недостаток электронов, который образован искусственным методом. Противоположная сторона кристалла также имеет проводимость, но n-типа и обладает избытком электронов. Между двумя областями имеется граница, которая и называется p-n переходом.

Такие особенности внутреннего устройства наделяют диоды их главным свойством – возможностью проведения электрического тока только в одном направлении.

Общие сведения

Прежде чем рассматривать, как работает диод, необходимо подробно изучить его устройство, разновидности и узнать, зачем он применяется. Это поможет лучше понять принцип действия и выбрать максимально эффективное приспособление для определённого оборудования.

Устройство диода

Диод (от англ. diode) выглядит просто и имеет конструкцию, состоящую из небольшого количества элементов. Это позволяет мастерам не приобретать дорогостоящие изделия, а изготавливать их своими руками. Самодельные приспособления хоть и стоят намного дешевле, но выполняют те же функции, что и покупные.

Так как диоды часто изображаются на электросхемах, то определение их параметров считается довольно важным мероприятием. Обозначением для этих элементов служит комбинация символов VD1, VD2 и так далее.

Схема диода предусматривает наличие следующих элементов:

  1. Корпус. Он представляет собой стеклянный, керамический или металлический вакуумный баллон.
  2. Два электрода (катод и анод). Они располагаются внутри баллона и используются для обеспечения эмиссии электронов. Чаще всего применяются электроды косвенного накала, которые имеют цилиндрическую форму, и обладают специальным слоем, испускающим электроны. В некоторых старых конструкциях можно встретить эти элементы в виде тонкой нити, накаливающейся в процессе работы приспособления.
  3. Подогреватель. Он находится внутри катода и устроен в виде проволоки, которая накаливается из-за прохождения электрического тока.
  4. Диодный кристалл. Для изготовления этого элемента применяется германий или кремний. Одна его часть проводит электричество и имеет недостаточное количество электронов, а вторая — избыток.
  5. P-n переход — область между первой и второй частью диодного кристалла.

Принцип действия

Принцип работы диода довольно простой и разобраться в нём сможет не только профессионал, но и новичок. Для этого не нужно иметь специальное образование или навыки работы с таким приспособлением, а достаточно обладать общим представлением об устройстве.

Принцип действия диода:

  1. Электрический ток проходит через устройство и воздействует на катод диода.
  2. Из-за этого подогреватель постепенно накаляется, а электрод начинает испускать электроны.
  3. Следствием этого становится образование электрического поля между двумя электродами, которое является катализатором процесса притяжения электронов к аноду, обладающему положительным зарядом. Благодаря этому образуется эмиссионный ток.
  4. Пространственный отрицательный заряд, который появляется между двумя электродами, препятствует движению электронов к аноду. Из-за этого часть их меняет своё направление, и начинает двигаться к катоду.
  5. Попавшие на анод электроны образуют анодный ток, параметры которого соответствуют катодному.
  6. Если электрическое поле, возникшее между электродами, препятствует возвращению частиц на катод, то электродиод остаётся в запертом состоянии. Всё это приводит к размыканию цепи.

Разновидности приспособлений

Производители электронных элементов делают несколько типов диодов. Все они немного отличаются друг от друга, имеют различные свойства, а также используются для достижения определённых целей.

Диоды бывают:

  1. Выпрямительные. Это наиболее распространённый тип приспособлений, который используется в устройствах, способствующих преобразованию переменного тока промышленной частоты в постоянный.
  2. Высокочастотные. Большинство моделей современного оборудования функционируют при рабочей частоте в несколько гигагерц. В таких конструкциях применяются специальные диоды, рассчитанные на высокую частоту.
  3. Переключающие. Эти приспособления используются в тех схемах, где диод должен работать в различных режимах. В одном из них он оказывается смещённым в прямом направлении, а в другом — в обратном.
  4. Стабилитроны. Такие элементы применяются только в конструкциях, помогающих стабилизировать напряжение, поступающее к оборудованию.
  5. Варикапы. Они используются в параметрических усилителях и прочих подобных устройствах. С их помощью происходит коррекция частотной модуляции и автоматическая подстройка частоты.
  6. Диоды Шоттки. Назначение этого приспособления — малое падение напряжения при прямом включении. Область их применения ограничивается низковольтными электрическими цепями.
  7. Тиристоры (управляемые диоды). Они часто применяются в схемах, которые предназначены для плавного пуска двигателя, регулировки мощности или включения лампочки.
  8. Симисторы. Эта разновидность диодов используется для обеспечения работы систем, питающихся от переменного напряжения, так как способна пропускать электричество в обоих направлениях. Они представляют собой 2 тиристора, соединённые между собой.

Область применения

Диоды широко применяются по всему миру и входят в состав различных приспособлений. В большинстве случаев несколько таких элементов объединяются в общую конструкцию. Их количество выбирается исходя из типа и особенностей каждой схемы.

Назначение

диод

Ниже приводятся основные области применения диодов, на примере которых становится понятно их основное назначение:

  1. Диодные мосты представляют собой 4, 6 или 12 диодов, соединенных между собой, их количество зависит от типа схемы, которая может быть однофазной, трехфазной полумостовой или трехфазной полномостовой. Они выполняют функции выпрямителей, такой вариант чаще всего используется в автомобильных генераторах, поскольку внедрение подобных мостов, а также использование вместе с ними щеточно-коллекторных узлов, позволило в значительной степени сократить размеры данного устройства и увеличить степень его надежности. Если соединение выполнено последовательно и в одну сторону, то это повышает минимальные показатели напряжения, которое потребуется для отпирания всего диодного моста.
  2. Диодные детекторы получаются при комбинированном использовании данных приборов с конденсаторами. Это необходимо для того, чтобы было можно выделить модуляцию с низкими частотами из различных модулированных сигналов, в том числе амплитудно-модулированной разновидности радиосигнала. Такие детекторы являются частью конструкции многих бытовых потребителей, например, телевизоров или радиоприемников.
  3. Обеспечение защиты потребителей от неверной полярности при включении схемных входов от возникающих перегрузок или ключей от пробоя электродвижущей силой, возникающей при самоиндукции, которая происходит при отключении индуктивной нагрузки. Для обеспечения безопасности схем от возникающих перегрузок, применяется цепочка, состоящая из нескольких диодов, имеющих подключение к питающим шинам в обратном направлении. При этом, вход, которому обеспечивается защита, должен подключаться к середине этой цепочки. Во время обычного функционирования схемы, все диоды находятся в закрытом состоянии, но если ими было зафиксировано, что потенциал входа ушел за допустимые пределы напряжения, происходит активация одного из защитных элементов. Благодаря этому, данный допустимый потенциал получает ограничение в рамках допустимого питающего напряжения в сумме с прямым падением показателей напряжение на защитном приборе.
  4. Переключатели, созданные на основе диодов, используются для осуществления коммутации сигналов с высокими частотами. Управление такой системой осуществляется при помощи постоянного электрического тока, разделения высоких частот и подачи управляющего сигнала, которое происходит благодаря индуктивности и конденсаторам.
  5. Создание диодной искрозащиты. Используются шунт-диодные барьеры, которые обеспечивают безопасность путем ограничения напряжения в соответствующей электрической цепи. В совокупности с ними применяются токоограничительные резисторы, которые необходимы для ограничения показателей электрического тока, проходящего через сеть, и увеличения степени защиты.

Использование диодов в электронике на сегодняшний день весьма широко, поскольку фактически ни одна современная разновидность электронного оборудования не обходится без этих элементов.

Обозначение диода на схемах

Для пояснения работы радиоэлектронного устройства используют электрические принципиальные схемы. Найти диод на схеме не составит труда, потому что обозначение диода осуществляется с помощью треугольника с вертикальным отрезком на его вершине.

обозначение диода на схемах

Рядом ставится порядковый номер и буквы VD.

Некоторые популярные диоды

Определение и типы диодов

Упрощенно диод можно понимать как активный электрический элемент проводящий ток только в одном направлении.
Как клапан в гидравлике. Существует несколько типов диодов отличающихся как по физическому принципу работы,
так и по базовому материалу. В очень общих чертах они делятся на полупроводниковые и вакуумные. Итак, диоды
бывают:

— вакуумные (они же кенотроны);

— на основе p-n перехода между полупроводниками различных типов проводимости: кремниевые (Si) и
карбидокремниевые (SiC) диоды;

— на основе контакта Шоттки между металлом и полупроводником.

Вакуумные диоды используются крайне редко, только в спецприложениях, например высоковольтной и
высокочастотной технике. Наиболее популярными диодами являются кремниевые диоды и диоды Шоттки.

Кроме физической природы диоды классифицируются по функциональному назначению:

— выпрямительные диоды, используемые, как правило, для
выпрямления сетевого напряжения низкой частоты (50 Гц). Как правило, это кремниевые, дешевые диоды. Они
ставятся как непосредственно на входе безтрансформаторных импульсных источников питания, так и после
трансформатора в трансформаторных источниках.

— быстродействующие кремниевые диоды — используются в составе
импульсных источников питания при высоких значениях обратного напряжения (100-1000 вольт). Отличаются малым
временем восстановления обратной проводимости, составляющим величину менее 200 нс. Внутри класса имеют
условную подклассификацию Fast (500-150 нс), UltraFast (70-50 нс), HiperFast (35-20 нс).

— кремниевые импульсные диоды – используются в составе
функциональных (не силовых) цепей. Типичный пример – диод 1N4148; Отличаются малыми рабочими токами
(миллиамперы) и большим быстродействием (время обратного восстановления 1N4148 – 4 нс).

— высоковольтные диоды – представляют собой последовательное
соединение нескольких (5-20 штук) кристаллов кремниевых диодов в одном корпусе. При этом максимальное
обратное напряжение составляет единицы-десятки киловольт, а ток как правило – небольшой и не превышает 1
ампера. Используются в ряде специальных приложений. Быстродействие этих диодов, как правило, невысокое.

Отдельно следует выделить диоды Шоттки – которые используются
и как функциональные (сигнальные) диоды и как силовые. Их отличительными чертами являются высокое
быстродействие, малое падение напряжения (0,3-0,5 В) по сравнению с кремниевыми диодами (1-1,2 В). К
недостаткам относят сравнительно малое обратное напряжение (20-100 В) чувствительность к перенапряжению,
значительный обратный ток. Диоды Шоттки часто используются в качестве выпрямительных диодов высокочастотных
преобразователей с малым выходным напряжением.

Здесь не рассматриваются диоды чисто радиочастотных применений СВЧ, варикапы, смесительные и т.д. поскольку
это вы ходит за рамки данного повествования.

Условное обозначение диода представлено на рисунке VD.1

Рисунок VD.1 – Условное обозначение диода на основе p-n перехода и диода Шоттки

Электрод, в который втекает ток, называется анодом, а электрод из которого ток вытекает – катодом.
Исторические названия эти связаны с вакуумными диодами, в которых электроны эмитировались накальным катодом
и принимались анодом. Символически диод обозначает собой направление протекания тока.

Функциональные применения диода

— выпрямление переменного тока в составе тех или иных выпрямителей (включая умножители напряжения);

— защита от превышения напряжения в схемах ограничения уровня и снабберах;

— в пиковых детекторах на операционных усилителях;

— в низковольтных стабилизаторах напряжения (используется прямое падение напряжения);

— в схемах на переключаемых конденсаторах, включая схемы бустрепного питания;

— схемах реализации логических операций ИЛИ (рисунок VD.3 ).

Ниже представлено несколько примеров использования диодов.

Рисунок VD.2 — Схема двухполупериодного выпрямителя

Рисунок VD.3 — Схема реализации логических операций ИЛИ

— схемах ограничения амплитуды сигнала (рисунок VD.4).

Рисунок VD.4 — Схема ограничения амплитуды сигнала

Характеристики диодов

Основной характеристикой диода является его ВАХ – вольтамперная характеристика – зависимость тока
пропускаемого диодом от напряжения на нем. Она не линейна и имеет фактически экспоненциальный характер.

Форма кривой ВАХ диода (рисунок VD.5) зависит от температуры: при нагреве уменьшается прямое падение
напряжения и возрастает обратный ток, снижается напряжение пробоя.

Рисунок-схема

Рисунок VD.5. Форма вольтамперной характеристики диода

Из вольтамперной характеристики следуют её производные:

— прямое падение напряжение на диоде VF (при заданных токе и температуре);

— обратный ток утечки IRM (при заданном обратном напряжении и температуре);

— максимальное обратное напряжение VR (при заданной температуре).

Площадь p-n перехода, размер кристалла, конструкция теплоотвода определяют мощностные характеристики
диода:

— максимальный постоянный рабочий ток;

— максимальный импульсный ток (при заданной длительности импульса);

— максимальная отводимая (рассеиваемая мощность);

— тепловое сопротивление корпуса.

Динамическими характеристиками диода, определяющими его быстродействие, являются:

— время восстановления при резкой смене напряжения с прямого на обратное;

— емкость перехода.

На рисунках VD.6 — VD.8 представлены экспериментально измеренные ВАХ распространенных типов диодов (для
сравнения представлены ВАХ кремниевых диодов и диода Шоттки).

Рисунок-схема

Рисунок VD.6 — Экспериментально измеренная вольтамперная характеристика кремниевого диода 1N4148

Рисунок-схема

Рисунок VD.7 Экспериментально измеренная вольтамперная характеристика кремниевого диода FR157

Рисунок-схема

Рисунок VD.8 Экспериментально измеренная вольтамперная характеристика диода Шоттки 1N5819

Основные параметры реальных диодов

1. Максимальное импульсное обратное напряжение (Peak Repetitive Reverse Voltage) VRRM–
максимальная величина прикладываемого к диоду импульсного обратного напряжения.

2. Максимальное рабочее обратное напряжение (Working Peak Reverse Voltage)
VRWM
– максимальная величина прикладываемого к диоду обратного напряжения в рабочем режиме.

3. Максимальное блокирующее напряжение (DC Blocking Voltage) VR – максимальная величина
прикладываемого к диоду постоянного напряжения. Выше этого напряжения начинается пробой. Соответствует
началу пробоя на обратной ветви ВАХ.

NB: На практике все перечисленные типы напряжения равны между собой и при проектировании схем необходимо,
не допускать превышения напряжения на диоде данной величины.

4. Максимальное среднеквадратичное обратное напряжение (RMS Reverse Voltage)
VR(RMS) – максимальная величина действующего
(среднеквадратичного) напряжения в цепи переменного тока, превышение которой приводит к пробою диода.
Фактически подразумевается переменное напряжение синусоидальной формы.

5. Средний рабочий ток (Average Rectified Output Current) IO – максимальное среднеквадратичное
значение тока проходящего через диод в стационарном режиме.

6. Максимальный импульсный ток (Repetitive peak forward current) IFRM — максимальная амплитуда
импульсного периодического тока проходящего через кристалл диода. Как правило, указывается длительность
импульсов и частота повторения.

7. Максимальный импульсный непериодический ток (Non-Repetitive Peak Forward SurgeCurrent) IFSM
— максимальная амплитуда импульсного непериодического тока проходящего через кристалл диода. Как
правило, указывается длительность импульса.

8. Прямое падение напряжения на диоде (Forward Voltage) VFM – падение напряжения на диоде при
прямом смещении (в открытом состоянии). Как правило, указывается при конкретной величине прямого тока.

9. Максимальный обратный ток (Peak Reverse Current) IRM – максимальный обратный ток через
диод. Указывается при максимальном обратном напряжении на диоде и при конкретном значении температуры.

10. Ёмкость p-n перехода (Typical Junction Capacitance) Cj – паразитная емкость p-nперехода
диода. Сильно зависит от приложенного обратного напряжения, поэтому в datasheetкроме усредненной
величины, как правило, приводят зависимость емкости от обратного напряжения.

11. Тепловое сопротивление кристалл – воздух (Typical Thermal Resistance Junction toAmbient)
RθJA – тепловое сопротивление между кристаллом (p-n переходом) диода и окружающим
воздухом. Зависит от типа корпуса.

12. Максимальная рабочая температура (Maximum DC Blocking Voltage Temperature) TA –
максимальная рабочая температура при которой сохраняется указанное значение максимального обратного
напряжения.

13. Максимальная рассеиваемая мощность (Total power dissipation) Ptot – максимальная мощность
рассеиваемая корпусом диода.

14. Параметр максимальной энергии поглощаемой кристаллом без разрушения (Rating for fusing) I2t
– произведение квадрата максимального импульсного тока через диод на его длительность. Это соотношение,
измеряемое в А2с (ампер в квадрате на секунду) используется при выборе защитных цепей от
перегрузки (предохранителей).

15. Время восстановления обратной проводимости (Reverse recovery time) trr – время за которое
диод после приложения обратного напряжения переходит в закрытое состояние (обратная проводимость).

Максимальные ток и мощность диода

Динамические характеристики диода. Восстановление обратной проводимости. Барьерная емкость диода

Быстродействие диода, то есть свойство быстро восстанавливать обратную проводимость, является важной
характеристикой для диодов, работающих в условиях быстрой смены полярностей напряжения прикладываемого к
диоду – в высокочастотных выпрямителях, схемах бустрепного питания, детекторных схемах и ряде других.

На рисунке VD.9 представлен один из типовых фрагментов электрических схем с диодами и полупроводниковыми
ключами. Эта схема описывает жесткий режим восстановления обратной проводимости диода. На примере этой схемы
поясним процесс восстановленияобратной проводимости диода [EE33D — Power Electronic Circuits ссылка], [2 Reasons Why
Soft-Recovery Trr is Important in High Voltage Diodes ссылка],
[Understanding Diode Reverse Recovery and its Effect on Switching Losses. Peter Haaf, Jon Harper. Fairchild
Power Seminar 2007]. Временные диаграммы токов и напряжений, описывающих процессы в представленной схеме
представлены на рисунке VD.10.

Рисунок VD.9. Электрическая схема включения диода для пояснения эффекта обратного восстановления

Рисунок-схема

Рисунок VD.10. Временные диаграммы напряжений и токов схемы поясняющие процесс восстановления обратной
проводимости диода

Для упрощенного понимания процессов выключения диода примем индуктивность L в схеме достаточно большой, чтобы
она фактически играла роль источника тока. В начальный момент времени полупроводниковый ключ закрыт, и ток
индуктивности полностью замыкается через диод. После подачи управляющего импульса на затвор транзистора и
превышения им некоторого порогового напряжения происходит постепенный рост тока через ключ ISW,
начиная с момента времени tswitch. При этом ток, протекающий через диод IDпостепенно
уменьшается, поскольку ток индуктивности начинает частично «сливаться» через открывающийся ключ. В некоторый
момент времени (начало интервала tA) когда ток индуктивности полностью замкнется через ключ
(IL = ISW) ток через диод изменит свое направление. В первой половине импульса
реверсного тока (период tA) происходит разряд емкости p-n перехода при этом напряжение на диоде
некоторое время остается положительным а обратный ток достигает максимума. Далее обратный ток через диод
начинает снижаться (период tB), а обратное напряжение возрастает до напряжения источника
VDC.

Практически важной характеристикой является форма кривой обратного тока в момент восстановления обратной
проводимости (рисунок VD.10). По кривой определяется время восстановления и «мягкость восстановления».
Кривая реверсного тока имеет два характерных периода:

— период tA – время от начала импульса реверсного тока (пересечение током нулевой линии) до
максимального значения обратного тока IRRM . Соответствует разряду зарядов накопленных в так
называемой обеднённой области p-n перехода.

— период tB – время между моментом соответствующим максимуму обратного тока IRRM и
моментом когда ток уменьшится на 25% от максимального достигнутого значения.

Время восстановления обратной проводимости (reverse recovery
time) tRR определяется по осциллограмме обратного тока (рисунок VD.10) как время между
пересечением тока нулевой отметки (начало реверсного тока) и моментом когда величина реверсного тока спадает
на 25% от своего максимально достигнутого значения. Время восстановления – интуитивно понятный параметр,
характеризующий время, за которое диод восстанавливает свои непроводящие свойства. Время восстановления
обратной проводимости tRR равно сумме времен периодов tA и tB:

Формула

Максимальное значение реверсного тока IR связано с длительностью периода tA и скоростью
спада тока:

Формула

Критерий «мягкости восстановления» (softness factor) SF –
критерий определяющий скорость обрыва обратного тока. Если обрыв тока происходит слишком резко, то это может
стать причиной нежелательных перенапряжений обусловленных паразитными индуктивностями контуров. Иногда этот
эффект используют в генераторах импульсов на основе специализированных SOS-диодов. В качестве критерия
«мягкости» использую так называемы «фактор мягкости» SF определяемый как отношение длительностей периодов
tB к tA :

Формула

Для обычных диодов tA много больше tB , для импульсных «мягких» диодов наоборот
tBмного больше tA. «Фактор мягкости» SF можно определить из datasheet диодов исходя из
представленных временных осциллограмм восстановления обратной проводимости. Обычно для импульсных силовых
диодов класса «ultrafast» характерное значение SF равно 1, для обычных диодов величина SF может составлять
0,2-0,6.

Заряд обратного восстановления (Reverse Recovery Charge)
QRR – это реверсный заряд, который должен пройти через переход диода для перевода его из
состояния проводимости в закрытое состояние. Заряд обратного восстановления является базовым параметром
диода, определяющим его динамические характеристики. Исходя из формы импульса реверсного тока этот заряд
равен:

Формула

Откуда максимальный ток определяется из соотношения:

Формула

Приравнивая выражения для IR получаем:

Формула

Преобразуя это выражение получаем:

Формула

Учитывая, что tA и tB связаны через «фактор мягкости» SF:

Формула

Получаем:

Формула

Откуда выразим tA:

Формула

Тогда:

Формула

Откуда получаем практически важные соотношения:

— для расчета времени восстановления обратной проводимости tRR :

Формула

— и для расчета максимальной величины обратного тока IRRM :

Формула

Используя представленные выражения, рассчитываются динамические характеристики диода.

Барьерная емкость диода — собственное
значение емкости p-n перехода находящегося в обратном смещении (закрытом состоянии). В дополнение к выше
описанному инерционному процессу «переключения» диода в непроводящее состояние диод, когда к нему приложено
обратное напряжение он (диод) обладает собственным значением барьерной емкости, которая зависит от
напряжения, что важно также учитывать при расчете динамических режимов. Емкость пропорциональна площади p-n
перехода, на практике это означает, что более мощные диоды с большим номинальным током будут иметь и большее
значение емкости. Реально величина емкости не является постоянной и существенно зависит от приложенного
напряжения.

Расчет тепловых потерь в диоде на переключение

В момент восстановления проводимости к диоду приложено обратное напряжение и через него протекает некоторый
импульс тока длительностью trev. Таким образом, в кристалле диода выделяется некоторая энергия:

Формула

Общая выделяемая тепловая мощность пропорциональна частоте импульсов f.

Формула

Основное выделение энергии происходит в периода tB когда напряжение на диоде имеет величину
существенно большую по сравнению с прямым падением напряжения (как в период tA). Полагая линейную
форму спада тока и роста обратного напряжения получим:

Выражение для напряжения на диоде будет иметь вид:

Формула

Выражение для тока через диод будет иметь вид:

Формула

Выражение для выделяющейся мощности на диоде будет иметь вид:

Формула

Перемножая VVD(t) и IVD(t), получаем:

Формула

Упрощая которое получаем выражение для мощности динамических потерь
PVD_trans«на переключение»:

Формула

где:

VDC – обратное напряжение, (напряжения источника питания);

f — рабочая частота;

IRRM — максимальная величина обратного тока, вычисляемая по формуле:

Формула

здесь: QRR заряд обратного восстановления (Reverse Recovery Charge) – представлен в datasheet-ах,
скорость спада тока di/dt определяется характеристиками схемы, а «фактор мягкости» SF можно определить из
datasheet диодов исходя из представленных временных осциллограмм восстановления обратной проводимости.
Обычно для импульсных диодов характерное значение SF равно 1.

tB — время между моментом соответствующим максимуму обратного тока IRRM и моментом
когда ток уменьшится на 25% от максимального достигнутого значения. Учитывая связь tA и
tB через «фактор мягкости» SF получаем:

Формула
Формула

Отсюда tB может быть вычислено по соотношению:

Формула

Учитывая, что в большинстве случаев SF≈1, то в первом приближении tB может быть определено как:

Формула

Объединим в итоговое выражение для мощности динамических потерь диода
PVD_trans «на переключение»:

Формула

Упростим данное соотношение:

Формула

Результирующее выражение для мощности динамических потерь PVD_trans «на
переключение» имеет вид:

Формула

где:

QRR — заряд обратного восстановления;

VDC – обратное напряжение, (напряжения источника питания);

f — рабочая частота;

SF — «фактор мягкости» диода (в первом приближении может быть принят равным 1).

В ряде случаев в datasheet не приводится значение заряда обратного восстановления QRR, а
приводятся:

— зависимости тока восстановления обратной проводимости от IRRM от скорости спада тока di/dt;

— зависимости времени восстановления обратной проводимости tRR от скорости спада тока di/dt.

В этом случае мощности динамических потерь PVD_trans вычисляется по
соотношению:

Формула

где:

VDC – обратное напряжение, (напряжения источника питания);

IRRM(di/dt) — ток восстановления обратной проводимости от IRRM при заданной скорости
спада тока di/dt;

tRR(di/dt) — зависимости времени восстановления обратной проводимости tRR при заданной
скорости спада тока di/dt.

SF — SF — «фактор мягкости» диода (в первом приближении может быть принят равным 1);

f — рабочая частота.

Обратная ветвь ВАХ – напряжение пробоя, обратный ток

По мере увеличения прикладываемого к диоду обратного напряжения монотонно возрастает и обратный ток. При этом
для каждого диода существует обратное напряжение, при достижении которого резко возрастает обратный ток и
напряжение на диоде быстро падает. При этом пороговом напряжении происходит пробой диода – в большинстве
случаем необратимое изменение внутренней структуры диода, сопровождаемое нарушением целостности p-n
перехода. Следствием пробоя является выход диода из строя. Исключением являются лавинные диоды, пробой
которых носит обратимый характер.

Обратный ток возрастает с увеличением температуры, также с увеличением температуры снижается напряжение
пробоя.

Для кремниевых диодов, эксплуатируемых при нормальной температуре тепловой мощностью, выделяемой при
приложенном обратном напряжении можно пренебречь. Однако при более жестком температурном режиме и больших
значениях обратного напряжения эта мощность может иметь значительную величину, сопоставимую с мощностью
потерь в проводящем состоянии.

Для диодов Шоттки обратный ток существенно больше, чем для кремниевых диодов и его необходимо учитывать в
расчетах в любом случае.

Мощность, рассеиваемая на диоде при обратном смещении равна произведению напряжения приложенного к диоду
VVD_rev и протекающего под действием этого напряжения обратного тока через
него IVD_rev:

Формула

Пример:

— для диода MUR1100E при температуре 100 °С обратный ток составляет величину порядка 600 мкА, если к диоду
приложено обратное напряжение 800 В то выделяющаяся тепловая мощность равна 0,48 Вт!

— для диода серии US1 максимальный обратный ток составляет 150 мкА (при температуре 100 °С) и при обратном
напряжении 1000 В выделяющаяся тепловая мощность составляет 0,15 Вт.

Важно то, что здесь работает принцип положительной обратной связи: с ростом температуры выделяемая мощность
увеличивается, что в свою очередь приводит к росту температуры.

Итак, тепловой режим диода работающего в условиях тока переменной полярности складывается из мощности,
выделяемой при прохождении прямого тока, мощности выделяемой в диоде при смене направления тока и мощности
выделяемой при обратном смещении:

Формула

где:

PVD_total – общая мощность, рассеиваемая на диоде;

PVD_stat+ – мощность, выделяемая при прохождении прямого тока;

PVD_stat- – мощность, выделяемая при прохождении обратного тока;

PVD_trans – мощность, выделяющаяся на диоде в результате переходных
процессов.

Последовательное и параллельное включение диодов

s

Создан метаматериал-«диод» для механической нагрузки


Изменения положения фрагментов материала под действием нагрузок
Corentin Coulais et al. / Nature, 2017

Физики из Института AMOLF (Нидерланды) и Университета Техаса разработали механический метаматериал, способный смещаться под действием механических нагрузок только в одну сторону и блокировать смещение в другую сторону. Это один из первых примеров системы нарушающей взаимность механических процессов при статических нагрузках. Авторы предполагают, что такие материалы могут найти применение в поглощении механической энергии — от удара или других процессов. Исследование опубликовано в журнале Nature

, кратко о нем сообщает пресс-релиз университета Техаса.

Многие физические процессы устроены так, что идут одинаково хорошо как в одну, так и в другую сторону. К примеру, если из точки А можно передать лазером сигнал в точку Б, то и можно передать и обратный сигнал аналогичным лазером. В механике можно обнаружить сходную ситуацию — если под действием нагрузки в точке А системы сместилась точка Б, то обратное действие на точку Б сместит точку А.

Такая взаимность процессов может быть нарушена в ряде случаев. Например, работа диода в цепи электрического тока делает невозможным протекание тока в одном из направлений. Похожие устройства существуют для акустических и оптических волн. Как отмечают авторы новой работы, все эти ситуации относятся к динамическим процессам — поля соответствующих сил в ходе эксперимента меняются со временем. Новый материал делает возможным нарушение взаимности в статических условиях постоянной нагрузки.

Разработка физиков относится к метаматериалам — средам, в которых свойства определяются в первую очередь структурой, а не химическим строением (выбором веществ). Первый материал напоминал собой по форме скелет рыбы, сделанный из резины. Все «ребра» крепились одной стороной к «позвоночнику», другой — к неподвижным боковым полосам. Ключевым для свойств материала было то, что «ребра» выходили из «позвоночника» не перпендикулярно, а под углом. Когда ученые тянули за «позвоночник» с той стороны, куда были «выгнуты» ребра, материал лишь испытывал небольшую деформацию. В ситуации, когда напряжение прикладывалось к другому концу «позвоночника», ребра выгибались — смещение материала в целом оказывалось значительным. Этот материал можно назвать одномерным.

Метаматериал — «скелет рыбы»

Corentin Coulais et al. / Nature, 2017

Поделиться

На его основе физики создали еще один подобный материал. По своему внешнему виду он напоминает несколько склеенных между собой ромбов. Как отмечают авторы, в нем разница между механическими свойствами в прямом и обратном направлении еще больше. «Материал в целом ведет себя асимметрично — с одной стороны он очень мягкий, с другой — очень жесткий» — описывает конструкцию Димитриос Соунас, соавтор работы. Напряжение, прикладываемое с мягкой стороны, заставляет квадраты легко крутиться, в результате противоположная сторона почти не смещается. Давление на твердую сторону, наоборот, приводит к сильному смещению мягкой стороны.

Читайте также:  Бесшумные контакторы для электрокотлов

Двумерный метаматериал и его механические свойства (отклик на сжатие)

Corentin Coulais et al. / Nature, 2017

Поделиться

Среди возможных применений материалов — эластичные элементы для робототехники, протезирования и запасания энергии. Кроме того, подобные среды могут эффективно подавлять вибрации или механическую энергию от столкновений.

Ранее мы сообщали о похожем метаматериале, разработанном физиками из Лейденского университета. Вместо эластичных конструкций в нем используются шестеренки, связанные определенным образом.

Владимир Королёв

Диод.Полупроводниковый диод. Подключение диода. Маркировка диодов. Работа диода.

Основы

Диод — электронный прибор, пропускающий ток только в одну сторону.

Обозначение диода на схемах

Диод имеет два контакта, которые называют анодом и катодом. При включении диода в электрическую цепь ток протекает от анода к катоду. Умение проводить ток только в одну сторону — основное свойство диода.
Диоды относятся к классу полупроводников и считаются активными электронным компонентам (резисторы и конденсаторы — пассивными).

Читайте также:  Что такое мощность в электроэнергетике?

Треугольник можно рассматривать как острие стрелки, показывающей направление тока

При подключении диода в цепь должна быть соблюдена правильная полярность. Чтобы было легко определить расположение катода и анода, на корпус или на один из выводов диода наносят специальные метки. Встречаются различные способы маркировки диодов, но чаще всего на сторону корпуса, соответствующую катоду, наносят кольцевую полоску.
Если маркировка диода отсутствует, то выводы полупроводниковых диодов можно определить с помощью измерительного прибора — как уже говорилось выше, диод пропускает ток только в одну сторону. Если измерительного прибора под рукой нет, можно использовать батарейку и маломощную лампочку так, как описано в приводящемся ниже эксперименте.

Работа диода

Полупроводниковые диоды

Работу диода можно наглядно представить при помощи простого эксперимента. Если к диоду через маломощную лампу накаливания подключить батарею так, чтобы положительный вывод батареи был соединен с анодом, а отрицательный — с катодом диода, то в получившейся электрической цепи потечет ток и лампочка загорится. Максимальная величина этого тока зависит от сопротивления полупроводникового перехода диода и поданного на него постоянного напряжения. Данное состояние диода назвается открытым, ток, текущий через него, — прямым током Iпр, а поданное на него напряжение, из-за которого диод оказался в открытым, — прямым напряжением Uпр.
Если выводы диода поменять местами, то лампа не будет светиться, так как диод будет находиться в закрытом состоянии и оказывать току в цепи сильное сопротивление. Стоит отметить, что небольшой ток через полупроводниковый переход диода в обратном направлении все же потечет, но в сравнении с прямым током будет настолько маленьким, что лампочка даже не среагирует. Такой ток называют обратым током Iобр, а напряжение, создающее его,— обратным напряжением Uобр.

В нейронных цепях BEAM-роботов диоды часто применяются при создании нейронов, моделирующих логическое сложение (элементы ИЛИ). Кроме того, в схемах BEAM-роботов иногда используются емкостные свойства диодов.

Прямое включение диода

прямое включение диода

На p-n-переход диода может оказывать воздействие напряжение, подаваемое с внешних источников. Такие показатели, как величина и полярность, будут сказываться на его поведении и проводимом через него электрическом токе.

Ниже подробно рассмотрен вариант, при котором происходит подключение плюса к области p-типа, а отрицательного полюса к области n-типа. В этом случае произойдет прямое включение:

  1. Под воздействием напряжения от внешнего источника, в p-n-переходе сформируется электрическое поле, при этом его направление будет противоположным относительно внутреннего диффузионного поля.
  2. Напряжение поля значительно снизится, что вызовет резкое сужение запирающего слоя.
  3. Под воздействием этих процессов значительное количество электронов обретет возможность свободно переходить из p-области в n-область, а также в обратном направлении.
  4. Показатели тока дрейфа во время этого процесса остаются прежними, поскольку они напрямую зависят только от числа неосновных заряженных носителей, находящихся в области p-n-перехода.
  5. Электроны обладают повышенным уровнем диффузии, что приводит к инжекции неосновных носителей. Иными словами, в n-области произойдет повышение количества дырок, а в p-области будет зафиксирована повышенная концентрация электронов.
  6. Отсутствие равновесия и повышенное число неосновных носителей заставляет их уходить вглубь полупроводника и смешиваться с его структурой, что в итоге приводит к разрушению его свойств электронейтральности.
  7. Полупроводник при этом способен восстановить свое нейтральное состояние, это происходит благодаря получению зарядов от подключенного внешнего источника, что способствует появлению прямого тока во внешней электрической цепи.

Как работает светодиод

Светодиод является двухпроводным полупроводниковым источником света. Это p-n переходной диод, который излучает свет при активации. Когда к выводам приложено подходящее напряжение, электроны могут рекомбинировать с электронными отверстиями внутри устройства, выделяя энергию в виде фотонов. Этот эффект называется электролюминесценцией, а цвет света (соответствующий энергии фотона) определяется энергетической шириной запрещенной зоны полупроводника.

Материал, используемый в светодиодах, в основном алюминий-галлий-арсенид (AlGaAs). В своем первоначальном состоянии атомы этого материала прочно связаны. Без свободных электронов проводимость электричества здесь становится невозможной.

При добавлении примеси, которая известна как легирование, вводятся дополнительные атомы, что эффективно нарушает баланс материала.

Эти примеси в виде дополнительных атомов способны либо обеспечивать свободные электроны (N-тип) в системе, либо высасывать некоторые из уже существующих электронов из атомов (P-тип), создавая «дыры» на атомных орбитах. В обоих случаях материал становится более проводящим. Таким образом, под воздействием электрического тока в материале N-типа электроны могут перемещаться от анода (положительный) к катоду (отрицательный) и наоборот в материале P-типа. Из-за свойства полупроводника ток никогда не будет идти в противоположных направлениях в соответствующих случаях.

Обратное включение диода

обратное включение диода

Теперь будет рассмотрен другой способ включения, во время которого изменяется полярность внешнего источника, от которого происходит передача напряжения:

  1. Главное отличие от прямого включения заключается в том, что создаваемое электрическое поле будет обладать направлением, полностью совпадающим с направлением внутреннего диффузионного поля. Соответственно, запирающий слой будет уже не сужаться, а, наоборот, расширяться.
  2. Поле, находящееся в p-n-переходе, будет оказывать ускоряющий эффект на целый ряд неосновных носителей заряда, по этой причине, показатели дрейфового тока останутся без изменений. Он будет определять параметры результирующего тока, который проходит через p-n-переход.
  3. По мере ростаобратного напряжения, электрический ток, протекающий через переход, будет стремиться достичь максимальных показателей. Он имеет специальное название – ток насыщения.
  4. В соответствии с экспоненциальным законом, с постепенным увеличением температуры будут увеличиваться и показатели тока насыщения.

Прямое и обратное напряжение

напряжения диода

Напряжение, которое оказывает воздействие на диод, разделяют по двум критериям:

Читайте также:  Что делает источник напряжения с током

  1. Прямое напряжение – это то, при котором происходит открытие диода и начинается прохождение через него прямого тока, при этом показатели сопротивления прибора являются крайне низкими.
  2. Обратное напряжение – это то, которое обладает обратной полярностью и обеспечивает закрытие диода с прохождением через него обратного тока. Показатели сопротивления прибора при этом начинают резко и значительно расти.

Сопротивление p-n-перехода является постоянно меняющимся показателем, в первую очередь на него оказывает влияние прямое напряжение, подающееся непосредственно на диод. Если напряжение увеличивается, то показатели сопротивления перехода будут пропорционально уменьшаться.

Это приводит к росту параметров прямого тока, проходящего через диод. Когда данный прибор закрыт, то на него воздействует фактически все напряжение, по этой причине показатели проходящего через диод обратного тока являются незначительными, а сопротивление перехода при этом достигает пиковых параметров.

Диод в цепи постоянного тока

Как мы уже говорили, диод пропускает электрический ток только в одном направлении. Для того, чтобы это показать, давайте соберем простую схему.

прямое включение диода
прямое включение диода

Читайте также:  Схема электрооборудования автомобиля

Так как наша лампа накаливания на 12 Вольт, следовательно, на блоке питания тоже выставляем значение в 12 В и собираем всю электрическую цепь по схеме выше. В результате, лампочка у нас прекрасно горит. Это говорит о том, что через диод проходит электрический ток. В этом случае говорят, что диод включен в прямом направлении.

диод в прямом включении
диод в прямом включении

Давайте теперь поменяем выводы диода. В результате, схема примет такой вид.

обратное включение диода
обратное включение диода

Как вы видите, лампочка не горит, так как диод не пропускает электрический ток, то есть блокирует его прохождение, хотя источник питания и выдает свои честные 12 Вольт.

обратное включение
обратное включение диода

Какой вывод можно из этого сделать? Диод проводит постоянный ток только в одном направлении.

Работа диода и его вольт-амперная характеристика

вольт-амперная характеристика диода

Под вольт-амперной характеристикой данных приборов понимается кривая линия, которая показывает то, в какой зависимости находится электрический ток, протекающий через p-n-переход, от объемов и полярности напряжения, воздействующего на него.

Подобный график можно описать следующим образом:

  1. Ось, расположенная по вертикали: верхняя область соответствует значениям прямого тока, нижняя область параметрам обратного тока.
  2. Ось, расположенная по горизонтали: область, находящаяся справа, предназначена для значений прямого напряжения; область слева для параметров обратного напряжения.
  3. Прямая ветвь вольт-амперной характеристики отражает пропускной электрический ток через диод. Она направлена вверх и проходит в непосредственной близости от вертикальной оси, поскольку отображает увеличение прямого электрического тока, которое происходит при увеличении соответствующего напряжения.
  4. Вторая (обратная) ветвь соответствует и отображает состояние закрытого электрического тока, который также проходит через прибор. Положение у нее такое, что она проходит фактически параллельно относительно горизонтальной оси. Чем круче эта ветвь подходит к вертикали, тем выше выпрямительные возможности конкретного диода.
  5. По графику можно наблюдать, что после роста прямого напряжения, протекающего через p-n-переход, происходит медленное увеличение показателей электрического тока. Однако постепенно, кривая достигает области, в которой заметен скачок, после которого происходит ускоренное нарастание его показателей. Это объясняется открытием диода и проведением тока при прямом напряжении. Для приборов, изготовленных из германия, это происходит при напряжении равном от 0,1В до 0,2В (максимальное значение 1В), а для кремниевых элементов требуется более высокий показатель от 0,5В до 0,6В (максимальное значение 1,5В).
  6. Показанное увеличение показателей тока может привести к перегреву полупроводниковых молекул. Если отведение тепла, происходящее благодаря естественным процессам и работе радиаторов, будет меньше уровня его выделения, то структура молекул может быть разрушена, и этот процесс будет иметь уже необратимый характер. По этой причине, необходимо ограничивать параметры прямого тока, чтобы не допустить перегрева полупроводникового материала. Для этого, в схему добавляются специальные резисторы, имеющие последовательное подключение с диодами.
  7. Исследуя обратную ветвь можно заметить, что если начинает увеличиваться обратное напряжение, которое приложено к p-n-переходу, то фактически незаметен рост параметров тока. Однако в случаях, когда напряжение достигает параметров, превосходящих допустимые нормы, может произойти внезапный скачок показателей обратного тока, что перегреет полупроводник и будет способствовать последующему пробою p-n-перехода.

Как определить анод и катод диода

1) на некоторых диодах катод обозначают полоской, отличающейся от цвета корпуса

катод диода
катод диода
катод диода
катод диода
катод смд smd диода
катод смд smd диода

2) можно проверить диод с помощью мультиметра и узнать, где у него катод, а где анод.  Заодно проверить его работоспособность. Этот способ железный ;-). Как проверить диод с помощью мультиметра можно узнать в этой статье.

Где находится анод, а где катод очень легко запомнить, если вспомнить воронку для наливания жидкостей в узкие горлышки бутылок. Воронка очень похожа на схему диода. Наливаем в воронку, и жидкость у нас очень хорошо бежит, а если ее перевернуть, то попробуй налей-ка через узкое горлышко воронки ;-).

воронка диод
воронка диод
диод обозначение на схеме
диод обозначение на схеме

Основные неисправности диодов

диод

Иногда приборы подобного типа выходят из строя, это может происходить из-за естественной амортизации и старения данных элементов или по иным причинам.

Всего выделяют 3 основных типа распространенных неисправностей:

  1. Пробой перехода приводит к тому, что диод вместо полупроводникового прибора становится по своей сути самым обычным проводником. В таком состоянии он лишается своих основных свойств и начинает пропускать электрический ток в абсолютно любом направлении. Подобная поломка легко выявляется при помощи стандартного мультиметра, который начинает подавать звуковой сигнал и показывать низкий уровень сопротивления в диоде.
  2. При обрыве происходит обратный процесс – прибор вообще перестает пропускать электрический ток в каком-либо направлении, то есть он становится по своей сути изолятором. Для точности определения обрыва, необходимо использовать тестеры с качественными и исправными щупами, в противном случае, они могут иногда ложно диагностировать данную неисправность. У сплавных полупроводниковых разновидностей такая поломка встречается крайне редко.
  3. Утечка, во время которой нарушается герметичность корпуса прибора, вследствие чего он не может исправно функционировать.

Пробой p-n-перехода

Подобные пробои происходят в ситуациях, когда показатели обратного электрического тока начинают внезапно и резко расти, происходит это из-за того, что напряжение соответствующего типа достигает недопустимых высоких значений.

Обычно различается несколько видов:

  1. Тепловые пробои, которые вызваны резким повышением температуры и последующим перегревом.
  2. Электрические пробои, возникающие под воздействием тока на переход.

График вольт-амперной характеристики позволяет наглядно изучать эти процессы и разницу между ними.

Электрический пробой

Последствия, вызываемые электрическими пробоями, не носят необратимого характера, поскольку при них не происходит разрушение самого кристалла. Поэтому при постепенном понижении напряжения можно восстановить всей свойства и рабочие параметры диода.

При этом, пробои такого типа делятся на две разновидности:

  1. Туннельные пробои происходят при прохождении высокого напряжения через узкие переходы, что дает возможность отдельно взятым электронам проскочить через него. Обычно они возникают, если в полупроводниковых молекулах имеется большое количество разных примесей. Во время такого пробоя, обратный ток начинает резко и стремительно расти, а соответствующее напряжение находится на низком уровне.
  2. Лавинные разновидности пробоев возможны благодаря воздействию сильных полей, способных разогнать носителей заряда до предельного уровня из-за чего они вышибают из атомов ряд валентных электронов, которые после этого вылетают в проводимую область. Это явление носит лавинообразный характер, благодаря чему данный вид пробоев и получил такое название.

Тепловой пробой

Возникновение такого пробоя может произойти по двум основным причинам: недостаточный теплоотвод и перегрев p-n-перехода, который происходит из-за протекания через него электрического тока со слишком высокими показателями.

Повышение температурного режима в переходе и соседних областях вызывает следующие последствия:

  1. Рост колебания атомов, входящих в состав кристалла.
  2. Попадание электронов в проводимую зону.
  3. Резкое повышение температуры.
  4. Разрушение и деформация структуры кристалла.
  5. Полный выход из строя и поломка всего радиокомпонента.