1 минута чтение

Поршневой насос: аксиальный, ручной, для воды

Устройство и принцип работы поршневого насоса

Насосы для воды на основе поршня используются в том случае, если более мощный жидкостный насос другого типа или насосы высокого давления не рентабельно использовать на небольшом участке.

Его можно применять в автономной системе водоснабжения из скважины, или же использовать ручной вариант. Ручной поршневой насос используется в том случае, если на даче нет света или же водопотребление не слишком большое или для опрыскивателя растений.

Устройство ручного поршневого насоса

Устройство поршневого водяного насоса очень простое и практически идентично автомобильному поршню.

Он состоит из таких элементов:

  • цилиндрический корпус;
  • шток;
  • поршень;
  • входная труба;
  • клапан в нижней крышке устройства;
  • выходная труба.

Поршень располагается внутри цилиндрического корпуса. В верхней крышке корпуса расположено отверстие (фланец) со специальной резиновой прокладкой. Через отверстие проходит шток, который одни краем приварен к поршню. Резиновая прокладка при этом отвечает за герметичность цилиндра и поддерживает высокое давление в нем.


Второй цикл движения поршня в верхнем направлении выдавливает жидкость в выпускную трубку. Оттуда она попадает в водоканал и двигается к крану, после чего весь цикл работы повторяется снова. Входная трубка устройства обычно выполнена из жестких материалов, так как она не должна склеиваться под действием втягивающего усилия. С этой целью используется армированный шланг или пластиковый трубопровод.

Принцип работы насоса

Крыльчатые насосы являются разновидностью поршневых насосов. Насосы этого типа были изобретены в середине 19 века.
Насосы являются двухходовыми, то есть подают воду без холостого хода.
Применяются, в основном, в качестве ручных насосов для подачи топлива, масел и воды из скважин и колодцев.

Конструкция:
Внутри чугунного корпуса размещены рабочие органы насоса: крыльчатка, совершающая возвратно-поступательные движения и две пары клапанов (впускные и выпускные). При движении крыльчатки происходит перемещение перекачиваемой жидкости из всасывающей полости в нагнетательную. Система клапанов препятствует перетоку жидкости в обратном направлении

Насосы этого типа имеют в своей конструкции сильфон (“гармошку”), сжимая который производят перекачку жидкости. Конструкция насоса очень простая и состоит всего из нескольких деталей.
Обычно, такие насосы изготавливают из пластика (полиэтилена или полипропилена).
Основное применение – выкачивание химически активных жидкостей из бочек, канистр, бутылей и т.п.

Низкая цена насоса позволяет использовать его в качестве одноразового насоса для перекачивания едких и опасных жидкостей с последующей утилизацией этого насоса.

Пластинчато-роторные (или шиберные) насосы представляют собой самовсасывающие насосы объемного типа. Предназначены для перекачивания жидкостей. обладающих смазывающей способностью (масла. дизельное топливо и т.п.). Насосы могут всасывать жидкость “на сухую”, т.е. не требуют предварительного заполнени корпуса рабочей жидкостью.

Принцип работы: Рабочий орган насоса выполнен в виде эксцентрично расположенного ротора, имеющего продольные радиальные пазы, в которых скользят плоские пластины (шиберы), прижимаемые к статору центробежной силой.
Так как ротор расположен эксцентрично, то при его вращении пластины, находясь непрерывно в соприкосновении со стенкой корпуса, то входят в ротор, то выдвигаются из него.
Во время работы насоса на всасывающей стороне образуется разрежение и перекачиваемая масса заполняет пространство между пластинами и далее вытесняется в нагнетательный патрубок.

Шестеренные насосы с наружным зацеплением шестерен предназначены для перекачивания вязких жидкостей, обладающих смазывающей способность.
Насосы обладают самовсасыванием (обычно, не более 4-5 метров).

Принцип действия:
Ведущая шестерня находится в постоянном зацеплении с ведомой и приводит её во вращательное движение. При вращении шестерён насоса в противоположные стороны в полости всасывания зубья, выходя из зацепления, образуют разрежение (вакуум). За счёт этого в полость всасывания поступает жидкость, которая, заполняя впадины между зубьями обеих шестерён, перемещается зубьями вдоль цилиндрических стенок в корпусе и переносится из полости всасывания в полость нагнетания, где зубья шестерён, входя в зацепление, выталкивают жидкость из впадин в нагнетательный трубопровод. При этом между зубьями образуется плотный контакт, вследствие чего обратный перенос жидкости из полости нагнетания в полость всасывания невозможен.

Насосы аналогичны по принципу работы обычному шестеренному насосу, но имеют более компактные размеры. Из минусов можно назвать сложность изготовления.

Принцип действия:
Ведущая шестерня приводится в действие валом электродвигателя. Посредством захвата зубьями ведущей шестерни, внешнее зубчатое колесо также вращается.
При вращении проемы между зубьями освобождаются, объем увеличивается и создается разряжение на входе, обеспечивая всасывание жидкости.
Среда перемещается в межзубьевых пространствах на сторону нагнетания. Серп, в этом случае, служит в качестве уплотнителя между отделениями засасывания и нагнетания.
При внедрении зуба в межзубное пространство объем уменьшается и среде вытесняется к выходу из насоса.

Название этого насоса происходит от формы рабочего органа – диска, выгнутого по синусоиде. Отличительной особенностью синусных насосов является возможность бережного перекачивания продуктов содержащих крупные включения без их повреждения.
Например, можно легко перекачивать компот из персиков с включениями их половинок (естественно, что размер перекачиваемых без повреждения частиц зависит от объема рабочей камеры. При выборе насоса нужно обращать на это внимание).

Размер перекачиваемых частиц зависит от объема полости между диском и корпусом насоса.
Насос не имеет клапанов. Конструктивно устроен очень просто, что гарантирует долгую и безотказную работу.

На валу насоса, в рабочей камере, установлен диск, имеющий форму синусоиды. Камера разделена сверху на 2 части шиберами (до середины диска), которые могут свободно перемещаться в перпендикулярной к диску плоскости и герметизировать эту часть камеры не давая жидкости перетекать с входа насоса на выход (см. рисунок).
При вращении диска он создает в рабочей камере волнообразное движение, за счет которого происходит перемещение жидкости из всасывающего патрубка в нагнетательный. За счет того, что камера наполовину разделена шиберами, жидкость выдавливается в нагнетательный патрубок.

Основной рабочей частью эксцентрикового шнекового насоса является винтовая (героторная) пара, которая определяет как принцип работы, так и все базовые характеристики насосного агрегата. Винтовая пара состоит из неподвижной части – статора, и подвижной – ротора.

Статор – это внутренняя n+1-заходная спираль, изготовленная, как правило, из эластомера (резины), нераздельно (либо раздельно) соединенного с металлической обоймой (гильзой).

Ротор – это внешняя n-заходная спираль, которая изготавливается, как правило, из стали с последующим покрытием или без него.

Стоит указать, что наиболее распространены в настоящее время агрегаты с 2-заходными статором и 1-заходным ротором, такая схема является классической практически для всех производителей винтового оборудования.

Важным моментом, является то, что центры вращения спиралей, как статора, так и ротора смещены на величину эксцентриситета, что и позволяет создать пару трения, в которой при вращении ротора внутри статора создаются замкнутые герметичные полости вдоль всей оси вращения. При этом количество таких замкнутых полостей на единицу длины винтовой пары определяет конечное давление агрегата, а объем каждой полости – его производительность.

Винтовые насосы относятся к объемным насосам. Эти типы насосов могут перекачивать высоковязкие жидкости, в том числе с содержанием большого количества абразивных частиц.
Преимущества винтовых насосов:
– самовсасывание (до 7. 9 метров),
– бережное перекачивание жидкости, не разрушающее структуру продукта,
– возможность перекачивания высоковязких жидкостей, в том числе содержащих частицы,
– возможность изготовления корпуса насоса и статора из различных материалов, что позволяет перекачивать агрессивные жидкости.

Насосы этого типа получили большое распространение в пищевой и нефтехимической промышленности.

Насосы этого типа предназначены для перекачивания вязких продуктов с твердыми частицами. Рабочим органом является шланг.
Преимущество: простота конструкции, высокая надежность, самовсасывание.

Принцип работы:
При вращении ротора в глицерине башмак полностью пережимает шланг (рабочий орган насоса), расположенный по окружности внутри корпуса, и выдавливает перекачиваемую жидкость в магистраль. За башмаком шланг восстанавливает свою форму и всасывает жидкость. Абразивные частицы вдавливаются в эластичный внутренний слой шланга, затем выталкиваются в поток, не повреждая шланга.

Вихревые насосы предназначены для перекачивания различных жидкотекучих сред. насосы обладают самовсасыванием (после залива корпуса насоса жидкостью).
Преимущества: простота конструкции, высокий напор, малые размеры.

Принцип действия:
Рабочее колесо вихревого насоса представляет собой плоский диск с короткими радиальными прямолинейными лопатками, расположенными на периферии колеса. В корпусе имеется кольцевая полость. Внутренний уплотняющий выступ, плотно примыкая к наружным торцам и боковым поверхностям лопаток, разделяет всасывающий и напорный патрубки, соединенные с кольцевой полостью.

При вращении колеса жидкость увлекается лопатками и одновременно под воздействием центробежной силы закручивается. Таким образом, в кольцевой полости работающего насоса образуется своеобразное парное кольцевое вихревое движение, почему насос и называется вихревым. Отличительная особенность вихревого насоса заключается в том, что один и тот же объем жидкости, движущейся по винтовой траектории, на участке от входа в кольцевую полость до выхода из нее многократно попадает в межлопастное пространство колеса, где каждый раз получает дополнительное приращение энергии, а следовательно, и напора.

Газлифт (от газ и англ. lift — поднимать), устройство для подъёма капельной жидкости за счёт энергии, содержащейся в смешиваемом с ней сжатом газе. Газлифт применяют главным образом для подъёма нефти из буровых скважин, используя при этом газ, выходящий из нефтеносных пластов. Известны подъёмники, в которых для подачи жидкости, главным образом воды, используют атмосферный воздух. Такие подъёмники называют эрлифтами или мамут-насосами.

В газлифте, или эрлифте, сжатый газ или воздух от компрессора подаётся по трубопроводу, смешивается с жидкостью, образуя газожидкостную или водо-воздушную эмульсию, которая поднимается по трубе. Смешение газа с жидкостью происходит внизу трубы. Действие газлифта основано на уравновешивании столба газожидкостной эмульсии столбом капельной жидкости на основе закона сообщающихся сосудов. Один из них — буровая скважина или резервуар, а другой — труба, в которой находится газожидкостная смесь.

Мембранные насосы относятся к объемным насосам. Существуют одно- и двухмембранные насосы. Двухмембраные, обычно выпускаются с приводом от сжатого воздуха. На нашем рисунке показан именно такой насос.
Насосы отличатся простотой конструкции, обладают самовсасыванием (до 9 метров), могут перекачивать химически агрессивные жидкости и жидкости с большим содержанием частиц.

Принцип работы:
Две мембраны, соединенные валом, перемещаются вперед и назад под воздействием попеременного нагнетания воздуха в камеры позади мембран с использованием автоматического воздушного клапана.

Всасывание: Первая мембрана создает разрежение, когда она движется от стенки корпуса.
Нагнетание: Вторая мембрана одновременно передает давление воздуха на жидкость, находящуюся в корпусе, проталкивая ее по направлению к выпускному отверстию. Во время каждого цикла давление воздуха на заднюю стенку выпускающей мембраны равно давлению, напору со стороны жидкости. Поэтому мембранные насосы могут работать и при закрытом выпускном клапане без ущерба для срока службы мембраны

Шнековые насосы часто путают с винтовыми. Но это совершенно разные насосы, как можно увидеть в нашем описании. Рабочим органом является шнек.
Насосы этого типа могут перекачивать жидкости средней вязкости (до 800 сСт), обладают хорошей всасывающей способностью (до 9 метров), могут перекачивать жидкости с крупными частицами (размер определяется шагом шнека).
Применяются для перекачивания нефтешламов, мазутов, солярки и т.п.

Внимание! Насосы НЕСАМОВСАСЫВАЮЩИЕ. Для работы в режиме всасывания требуется заливка корпуса насоса и всего всасывающего шланга)

Центробежные насосы являются самыми распространенными насосами. Название происходит от принципа действия: насос работает за счет центробежной силы.
Насос состоит из корпуса (улиитки) и расположенного внутри рабочего колеса с радиальными изогнутыми лопастями. Жидкость попадает в центр колеса и под действием центробежной силы отбрасывается к его перифирии а затем выбрасывается через напорный патрубок.

Насосы используются для перекачивания жидких сред. Существуют модели для химически активный жидкостей, песка и шлама. Отличаются материалами корпуса: для химических жидкостей используют различные марки нержавеющих сталей и пластика, для шламов – износостойкие чугуны или насосы с покрытием из резины.
Массовое использование центробежных насосов обусловлено простотой конструкции и низкой себестоимостью изготовления.

Многосекционные насосы – это насосы с несколькоми рабочими колесами, расположенными последовательно. Такая компоновка нужна тогда, когда необходимо большое давление на выходе.

Дело в том, что обычное центробежное колесо выдает максимальное давление 2-3 атм.

По этому, для получения более высоких значение напора, используют несколько последовательно установленных центробежных колес.
(по сути, это несколько последовательно соединенных центробежных насосов).

Такие типы насосов используют в качестве погружных скважинных и в качестве сетевых насосов высокого давления.

Трехвинтовые насосы предназначены для перекачивания жидкостей, обладающих смазывающей способностью, без абразивных механических примесей. Вязкость продукта – до 1500 сСт. Тип насоса объемный.
Принцип работы трехвинтового насоса понятен из рисунка.

Насосы этого типа применяются:
– на судах морского и речного флота, в машинных отделениях,
– в системах гидравлики,
– в технологических линиях подачи топлива и перекачивания нефтепродуктов.

Струйный насос предназначен для перемещения (откачки) жидкостей или газов с помощью сжатого воздуха (или жидкости и пара), подающегося через эжектор. Принцип работы насоса основан на законе Бернули (чем выше скорость течения жидкости в трубе, тем меньше давление этой жидкости). Этим обусловлена форма насоса.

Конструкция насоса чрезвычайно проста и не имеет движущихся деталей.
Насосы этого типа можно использовать в качестве вакуумный насосов или насосов для перекачивания жидкости (в том числе, содержащих включения).
для работы насоса необходим подвод сжатого воздуха или пара.

Струйные насосы, работающие от пара, называют пароструйными насосами, работающие от воды – водоструйными насосами.
Насосы, отсасывающие вещество и создающие разряжение, называются эжекторами. Насосы нагнетающие вещество под давлением – инжекторами.

Этот насос работает без подвода электроэнергии, сжатого воздуха и т.п. Работа насоса этого типа основана на энергии поступающей самотеком воды и гидроудара, возникающего при резком её торможении.

Принцип работы гидротаранного насоса:
По всасывающей наклонной трубе вода разгоняется до некоторой скорости, при которой отбойный подпружиненный клапан (справа), преодолевает усилие пружины и закрывается, перекрывая поток воды. Инерция резко остановленной воды во всасывающей трубе создает гидроудар (т.е. кратковременно резко возрастает давление воды в питающей трубе). Величина этого давления зависит от длины питающей трубы и скорости потока воды.
Возросшее давление воды открывает верхний клапан насоса и часть воды из трубы проходит в воздушный колпак (прямоугольник сверху) и отводящую трубу (слева от колпака). Воздух в колпаке сжимается, накапливая энергию.
Т.к. вода в питающей трубе остановлена, давление в ней падает, что приводит к открытию отбойного клапана и закрытию верхнего клапана. После этого вода из воздушного колпака выталкивается давлением сжатого воздуха в отводящую трубу. Так как отбойный клапан открылся, вода снова разгоняется и цикл работы насоса повторяется.

Стоит указать, что наиболее распространены в настоящее время агрегаты с 2-заходными статором и 1-заходным ротором, такая схема является классической практически для всех производителей винтового оборудования.

Конструктивные особенности

Основным элементом жидкостного поршневого насоса является полый металлический цилиндр, в котором и протекают все рабочие процессы, осуществляемые с перекачиваемой жидкостью. Физическое же воздействие на жидкость осуществляет поршень плунжерного типа. Благодаря этому элементу данный жидкостный насос и получил свое название.

Принцип работы поршневого насоса основывается на возвратно-поступательном движении его рабочего органа, действующего как гидравлический пресс. При этом в конструкции такой машины, в отличие от классических гидравлических устройств, присутствует механизм клапанного распределения, а также ряд дополнительных конструктивных элементов (в частности, кривошип и шатун, составляющие основу силовой части насоса жидкостного поршневого типа).

Устройство аксиально-поршневого насоса

Устройство аксиально-поршневого насоса

Плунжерный насос высокого давления

Принцип действия насоса высокого давления основан на увеличении хода плунжера, что, соответственно, увеличивает не только производительность, но и получаемое давление. Длина хода увеличивается за счет двухстороннего всасывания или наличия нескольких плунжеров.

Двухстороннее действие обозначает, что процесс откачивания происходит с двух сторон цилиндра, внутри которого двигается шток (плунжер). Перемещаясь вправо, шток создает давление для всасывания с левой стороны и нагнетает среду, выталкивая ее из рабочей камеры, справа. При движении влево процессы происходят в обратном порядке. Таким образом, объем перекачиваемой жидкости или создаваемое давление газа на выходе увеличивается в два раза. Тот же принцип действия имеют поршневые двухсторонние насосы.

Насосы высокого давления промышленного значения могут создавать давление до 3,5 мбар при мощности около 800 кВт.

Принцип действия и классификация поршневых насосов

Поршневой насос представляет собой объемную машину с возвратно-поступательным движением поршня в цилиндре.

На рисунке 6.1 представлена схема гидравлической части однопоршневого насоса одностороннего действия.

Принцип действия такого насоса заключается в следующем. При ходе поршня 1 вправо в рабочей камере цилиндра 2 освобождается объем и давление снижается (р рВ) и открывается нагнетательный клапан 4.

Жидкость поршнем вытесняется из цилиндра – происходит процесс нагнетания до конца хода поршня влево.

Из принципа действия поршневого насоса выявляются особенности его конструкции:

  • рабочая камера (цилиндр) изолирована от подводящего и напорного трубопроводов клапанами;
  • подача насоса зависит от геометрических размеров насоса (длины хода и площади поршня) и от числа двойных ходов поршня;
  • пределы преодолеваемого поршнем давления (напора) зависят от установленной мощности и прочности деталей насоса, т.е. насос может развивать любой напор;
  • поршень движется с переменной скоростью (от 0 в начале хода до максимальной в середине хода и снижающейся до нуля в конце хода).

В зависимости от условий работы и свойств перекачиваемых жидкостей насосы имеют весьма разнообразные конструкции. Ниже изложены некоторые принципы классификации поршневых насосов.

1. По типу приводной части различают насосы приводные, прямодействующие, ручные.

Приводные насосы – это насосы, у которых в приводной части имеется кривошипно-шатунный механизм для преобразования вращательного движения приводного вала в возвратно-поступательное движение поршня.

На рисунке 6.2 приведена схема приводного насоса, у которого приводная часть состоит из крейцкопфа 1, шатуна 2 и кривошипного вала 3. Кроме этих частей, для снижения числа ходов поршня в приводной части обычно имеется редуктор.

Прямодействующие насосы — это насосы, у которых поршень насоса общим штоком связан с поршнем двигателя.

На рисунке 6.3 представлена схема прямодействующего насоса, у которого приводная часть представляет собой паровую машину, состоящую из парового цилиндра 1, поршня 2 со штоком 3, непосредственно соединенным со штоком гидравлической части насоса, и золотниковой коробки распределения пара 4. В качестве двигателя прямодействующего насоса могут быть применены также гидравлические силовые цилиндры и пневмоцилиндры.

1. Ручные насосы — это насосы, у которых движение поршня осуществляется с помощью рукоятки вручную.

2. По расположению осей цилиндров насосы бывают горизонтальные, вертикальные и с осями, расположенными наклонно по отношению к основанию.

3. По числу цилиндров насосы выполняются одно, двух, трех и многоцилиндровыми.

4. По конструкции поршня насосы бывают:

а) собственно поршневые, т.е. поршень представляет собой диск с уплотнениями, которые плотно прилегают к цилиндру (рисунок 6.4), такие поршни применяются в насосах двухстороннего действия, имеющих большие подачи;

Рисунок 6.4 Рисунок 6.5

б) плунжерные – плунжер имеет длину, значительно превышающую диаметр (рисунок 6.5) и применяются при значительных давлениях и малых подачах;

в) с проходным поршнем, имеющим в теле нагнетательный клапан (рисунок 6.6). Такие поршни находят широкое применение в глубинных насосах для добычи нефти, в которых диаметр цилиндра ограничен размерами скважины;

г) диафрагменные насосы, в которых изменением формы эластичной пластины достигается изменение объема рабочей камеры (рисунок 6.7).

Насосы с диафрагмой имеют малую длину хода и создают малые подачи.

5. По числу действия различают насосы:

а) одностороннего действия, когда один ход поршня, сопровождается всасыванием жидкости, а другой – нагнетанием (рисунок 6.8)

Рисунок 6.8 Рисунок 6.9 Рисунок 6.10

б) двухстороннего действия, когда каждый ход поршня сопровождается процессами всасывания и нагнетания (рисунок 6.9).

в) дифференциального действия (рисунок 6.10), в котором – совершается один процесс всасывания при ходе поршня вправо и два процесса нагнетания. При ходе вправо жидкость нагнетается из камеры Б, а при ходе влево из камеры А часть жидкости протекает в камеру Б, а другая – в напорный трубопровод, улучшая равномерность ее поступления.

б) двухстороннего действия, когда каждый ход поршня сопровождается процессами всасывания и нагнетания (рисунок 6.9).

Поршневой насос: аксиальный, ручной, для воды

Поршневой насос для воды используется для выкачки жидкости из скважин и колодцев, глубина которых не превышает 10 м. Такое устройство значительно превосходит центробежные модели в плане требуемых затрат электроэнергии и по своей продуктивности.

Кроме того, на небольших дачных участках, где источники воды находятся сильно далеко от электросети, выгоднее использовать ручные поршневые насосы.

Устройство и принцип работы поршневого насоса

Насосы для воды на основе поршня используются в том случае, если более мощный жидкостный насос другого типа или насосы высокого давления не рентабельно использовать на небольшом участке.

Его можно применять в автономной системе водоснабжения из скважины, или же использовать ручной вариант. Ручной поршневой насос используется в том случае, если на даче нет света или же водопотребление не слишком большое или для опрыскивателя растений.

Поршневой насос жидкостный: устройство и принцип действия
Устройство ручного поршневого насоса

Устройство поршневого водяного насоса очень простое и практически идентично автомобильному поршню.

Он состоит из таких элементов:

  • цилиндрический корпус;
  • шток;
  • поршень;
  • входная труба;
  • клапан в нижней крышке устройства;
  • выходная труба.

Поршень располагается внутри цилиндрического корпуса. В верхней крышке корпуса расположено отверстие (фланец) со специальной резиновой прокладкой. Через отверстие проходит шток, который одни краем приварен к поршню. Резиновая прокладка при этом отвечает за герметичность цилиндра и поддерживает высокое давление в нем.

Принцип работы поршневых насосов (видео)

Цикл работы

В поршне имеется клапан обратного типа. Он впускает воду, но препятствует ее выходу назад. Точно такой же клапан располагается внутри впускной трубки в нижней крышке цилиндра. При подъеме штока вверх, он тянет за собой поршень.

При этом в подпоршневом пространстве образуется область разряженного давления, в которую всасывается вода через нижний клапан. Дальше поршень начинает движение вниз, создавая давление на нижний клапан.

Он закрывается, и вода проталкивается через верхний клапан в пространство над поршнем.

Второй цикл движения поршня в верхнем направлении выдавливает жидкость в выпускную трубку. Оттуда она попадает в водоканал и двигается к крану, после чего весь цикл работы повторяется снова.

Входная трубка устройства обычно выполнена из жестких материалов, так как она не должна склеиваться под действием втягивающего усилия.

С этой целью используется армированный шланг или пластиковый трубопровод.

Жидкостный поршневой насос высокого давления, в отличии от глубинных приборов, устанавливается над входом в скважину или колодец. А всасывание происходит через длинный шланг. При этом шток фиксируется на гидродвигатель, если модель представляет собой электронасос, или на металлическое коромысло, если приобретался ручной насос для воды.

В качестве клапанов устройства обычно используется либо шарик, либо мембрана в насосе мембранно поршневого типа. В первом случае, в качестве закрылки конического отверстия используется шарик из стекла, жесткого пластика или эбонита. Особенность мембранного типа заключается в том, что в качестве закрылки используется резиновая пластина, фиксированная с одной стороны.

Поршневой насос жидкостный: устройство и принцип действия
Кулачковый роторно-поршневый насос

Максимальная глубина, с которой забирает воду поршневой насос с такой конструкцией, не превышает 8 метров. Если зеркало воды относительно расположения устройства находится ниже, атмосферное давление будет препятствовать закачке.

Существуют модели и для глубоких водоемов, но конструкция у них отличается. Дюралюминиевый шток у них входит не через фланец, а через выпускную трубку на верхней крышке. Такое устройство усиливает давление в цилиндре и поднимает воду с глубины до 30 метров.

Прибор работает при погружении в толщу воды на 1,5 м.

Классификация поршневых насосов

Распределение агрегатов по видам проводится, исходя из конструкции и принципа действия механизма. Первым признаком, по которому разделяется поршневое насосное оборудование это тип привода. В этом плане выделяются механические и ручные варианты.

В ручном насосе поршневом в качестве привода используется коромысло, соединенное со штоком одной стороной.

В механических моделях также идет распределение. Приводом здесь используется электродвигатель. А вот передача крутящего момента проводится либо напрямую на шток, либо с помощью кривошипно-шатунного механизма. Сам мотор располагается отдельно от устройства в местах, недоступных для влаги.

Относительно типа поршня, выделяют три типа устройств:

  1. Жидкостный поршневой тип. В таких устройствах, стандартный плоский поршень с клапаном выступает как рабочий орган.
  2. Плунжерный тип. Механический гидронасос, в котором используется плунжер (поршень цилиндрической формы).
  3. Диафрагменный тип. На такие аппараты поверх стандартного поршня устанавливается прокладка, изолирующая его от перекачиваемой жидкости. Конструкцию этого типа используют грязевые насосы и буровые поршневые агрегаты. Корпус при этом обильно смазывается маслом или эмульсией.

Поршневой насос жидкостный: устройство и принцип действия
Радиально-поршневой насос – принцип действия

По принципу действия поршневые установки разделяют на:

  1. Одинарные. Представляют собой стандартный цикл работы и подают воду рывками.
  2. Устройства с двойным действием. В этом случае используются две рабочие камерами. При этом за один оборот идет сразу два цикла нагнетания жидкости. Обеспечивает равномерную подачу.
  3. В дифференциальных агрегатах имеются две камеры. Причем оба клапана (рабочий и впускной) располагаются в одной камере.

В зависимости от назначения устройства и необходимого объема подачи, на насосы поршневого типа устанавливается один, два или несколько поршней. Существуют модели с разным количеством цилиндров.

В таком случае для привода используется кривошипно-шатунный механизм.

Поршни в зависимости от размеров могут быть малыми (диаметр до 50 мм), средними (от 50 до 150 мм) и большими (диаметр превышает 150 мм).

Тип и структура насосных установок также разнятся в зависимости от жидкости, с которой работает устройство.

В этом плане выделяются:

  1. Насосы для холодной воды. Стандартные механизмы, предназначенные для выкачки воды из скважин и колодцев. Температура жидкости не должна превышать 45 градусов.
  2. Модели для выкачки горячей воды. Используются для жидкости с температурой свыше 45 градусов. Отличаются сплавами, не подверженными термическому воздействию.
  3. Кислотные агрегаты поршневого типа предназначены для работы с агрессивными химическими веществами. Механизмы устройства сделаны из высокопрочных материалов, не вступающих в реакцию с кислотами.
  4. Насосы буровые. Используются для бурения нефтяных скважин и каналов в глинистой почве. В этом случае поршневым насосом бурового типа выкачивается глина и грязь во время бурения. Используются как комплектующее буровой установки.

Кроме обычных поршневых установок, часто встречаются комбинированные типы. На них стандартный поршневой принцип работы сосуществует с другими типами. В результате они друг друга дополняют. Примером такой комбинации являются поршневые роторные насосы.

Поршневой насос жидкостный: устройство и принцип действия
Аксиально-поршневой насос

В роторно поршневом насосе кроме поступательного движения поршня используется вращательное движение ротора. В результате создается стабильный и равномерный поток жидкости. При этом мощность устройства не мало увеличивается. Идентичный принцип работы у насосов аксиально поршневых регулируемых и гидромоторов.

Некоторые виды аксиально поршневых насосов и гидромоторов используются на габаритной сельскохозяйственной технике и другом оборудовании. Они призваны регулировать гидравлический привод машин.

Устройство и принцип действия поршневых насосов

Поршневым насосом называется возвратно-поступательный насос, у которого рабочие органы выполнены в виде поршней. По количеству поршней эти насосы разделяются на однопоршневые, двухпоршневые, трехпоршневые и многопоршневые. По числу циклов нагнетания и всасывания за один двойной ход поршня различают насосы одностороннего действия, двустороннего действия и дифференциальные.

Схема однопоршневого насоса одностороннего действия представлена на

При движении поршня вправо в левой полости цилиндра и в рабочей камере создается разрежение. За счет разрежения верхний нагнетательный клапан К н прижимается к седлу, а нижний всасывающий клапан К в приподнимается, и в создавшийся зазор по всасывающей трубе засасывается жидкость из источника в рабочую камеру. При движении поршня влево в рабочей камере создается повышенное давление, под действием которого всасывающий клапан К в закрывается, а нагнетательный клапан К н приподнимается, и жидкость вытесняется из цилиндра в напорный трубопровод.

При многократном возвратно-поступательном движении поршня вода перемещается по всасывающей трубе через цилиндр насоса в нагнетательную трубу и дальше к месту потребления. При этом подача жидкости в нагнетательную линию оказывается неравномерной, что является существенным недостатком насосов одностороннего действия . Для устранения этого недостатка применяются насосы двустороннего действия.

При многократном возвратно-поступательном движении поршня вода перемещается по всасывающей трубе через цилиндр насоса в нагнетательную трубу и дальше к месту потребления.

На рис. 3.2 представлена схема насоса двустороннего действия (с двумя рабочими камерами). Процесс всасывания в одной камере идет одновременно с процессом нагнетания в другой.

Для обеспечения равномерности подачи применяются дифференциальные насосы (поршневые и плунжерные). На рис. 3.3 показана схема дифференциального насоса с диаметрами поршней D 1 и D 2 . На всасывающей стороне он работает как насос одностороннего действия, на нагнетательной стороне – как насос двустороннего действия. Его отличительной особенностью является то, что за один оборот вала кривошипа он производит всасывание за один ход поршня, а нагнетание жидкости – в течение обоих ходов поршня, вытесняя ее поочередно из камер А и Б в нагнетательный трубопровод.

По направлению оси движения рабочих органов поршневые (плунжерные) насосы могут быть горизонтальными и вертикальными.

Основные понятия, применяющиеся в теории насосов

На рис. 3.4 показана схема насосной установки , состоящей из насосного агрегата 1 , в состав которого входят насос и двигатель (на схеме двигатель не показан), всасывающей трубы 2 и напорного трубопровода 3 , отводящего из насоса жидкость к месту назначения.

В нижней части всасывающей трубы имеется сетка 4 , предохраняющая всасывающую трубу от попадания посторонних предметов и обратный клапан, необходимый для заливки насоса жидкостью перед пуском (в лопастных насосах) и предупреждающий обратное движение жидкости в случае остановки насоса.

В теории насосов применяется ряд терминов и определений, относящихся к насосам всех типов, в том числе и к поршневым насосам.

Напор насоса

В работающем насосе жидкости сообщается дополнительная энергия, которая расходуется на преодоление сопротивлений в напорном трубопроводе и на подъем жидкости в резервуар. Вертикальное расстояние h вс от свободной поверхности водоема до центра насоса называется вакуумметрической высотой всасывания. Потери энергии во всасывающем трубопроводе называются потерями при всасывании Вертикальное расстояние h н от центра насоса до уровня воды в резервуаре называется геодезической высотой нагнетания. Потери энергии в напорной линии называются потерями при нагнетании. Сумма геодезических высот h вс + h н , сложенная с суммой потерь энергии в системе, называется напором насоса Н:

Н = h вс + h н + h wвс + h wн . (7.9 )

Напор , развиваемый насосом, представляет собой количество энергии, сообщаемое насосом единице массы перекачиваемой жидкости. Напоризмеряетсяв метрах столба перекачиваемой жидкости или в единицах давления .

Напор, развиваемый работающим насосом, можно определить также по формуле (7.9 ) с использованием показаний вакуумметра и манометра, которыми обычно оборудуются насосные установки (рис. 3.4 ):

H = h м +h в + Δh + (w н 2 – w в 2) / (2g ) , (7.10 )

где Н – напор насоса, м ;

h м – показание манометра, выраженное в метрах столба перекачиваемой жидкости;

h в – показание вакуумметра, выраженное в метрах столба перекачиваемой жидкости;

Δh – вертикальное расстояние между точками присоединения манометра и вакуумметра, м ;

w н , w в – скорости в нагнетательной и всасывающей линиях (в местах присоединения манометра и вакуумметра), м/с ;

gм/с 2 .

Одним из основных технических показателей насоса является также давление насоса р :

р = р к – р н + ρ (w к 2 – w н 2) / (2g ) + ρ g (z к – z н) , (7.11 )

где р к , р н – давление на выходе и на входе в насос, Па ;

ρ – плотность жидкой среды, кг/м 3 ;

w к , w н – скорость жидкой среды на выходе и на входе в насос, м/с ;

g – ускорение свободного падения, м/с 2 ;

z к , z н – высота центра тяжести сечения выхода и входа в насос, м .

Напор насоса Н и давление насоса р связаны между собой зависимостью

Н = р / (ρ g ) , (7.12 )

где ρ – плотность жидкой среды, кг/м 3 ;

g – ускорение свободного падения, м/с 2 .

«История изобретения паровых машин» — Трудно представить нашу жизнь без электричества. Первый паровоз. Первый паровой автомобиль. Паровые машины. Преимущества. Определение. История изобретения паровых машин. Паровая турбина Герона. Цель. Паровая машина. Немного истории.

«Тепловые машины» — Рабочим веществом может быть водяной пар или газ. Двс. «Младший брат» — паровоз. Определить пути повышения КПД. Финиш. КПД идеального теплового двигателя. Решающая роль. Средняя скорость движения 72 км/ч. Домашнее задание. Цикл Карно. Экологические последствия работы тепловых двигателей. Сел на пароход, отправлявшийся в Лондон.

«Изобретение паровой машины» — Последующие изобретатели внесли много усовершенствований в насос Ньюкомена. Такой двигатель двойного действия был разработан Уаттом в 1782 году. Паровая машина Томаса Севери. Давление пара, подаваемого в цилиндр из котла (1), поднимало поршень. С 1776 года началось фабричное производство паровых машин.

«История паровой машины» — Паровые машины с возвратно-поступательным движением. Паровая машина. Первая в России двухцилиндровая вакуумная паровая машина. Вакуумные машины. Создание вакуума в закрытом цилиндре. Как она работает. Вид паровых двигателей. Какое у них преимущество. Преимущество паровых машин. Реальная паровая турбина.

«Тепловые насосы» — Система работает устойчиво, колебания температуры и влажности в помещении минимальны. Сечение различных типов вертикальных грунтовых теплообменников. Конструкция грунтового зонда. Зимой теплонасосная система передает в дом тепло неостывшей земли. Объекты жилищного строительства (коттеджи, многоквартирные дома).

«Тепловая машина» — Первый паровоз был сконструирован в 1803 г. английским изобретателем Ричардом Тревитиком. Презентация к уроку физики в 8 классе «Тепловые машины». Машины, преобразующие внутреннюю энергию топлива в механическую, называются тепловыми двигателями. Шотландский инженер, механик и изобретатель, интересовался паром и конденсацией воды.

Всего в теме 11 презентаций

Данная разновидность насосов является одной из самых древних. Механическое вытеснение жидкостной среды можно назвать простейшей реализацией принципа перекачки. В наши дни конструкции таких агрегатов, конечно, имеют более сложное устройство по сравнению с первыми представителями класса. В современном виде поршневой жидкостный насос имеет прочный корпус, развитую элементную базу и предполагает наличие широких возможностей для коммуникации. Последний аспект обуславливает распространение оборудования в разных сферах от бытовых нужд и вплоть до промышленных узкоспециализированных отраслей.

Основные понятия, применяющиеся в теории насосов