Напряжённости электрического поля: описание, определение единицы измерения, стандартная формула
Краткое описание
Увидеть невооружённым взглядом электрическое поле (ЭП) невозможно: его можно обнаружить в процессе воздействия на заряженные тела. Удивительно, но прямого касания может и не быть, так как должна присутствовать силовая природа. Ведь всем известно, что наэлектризованные волосы будут притягиваться к другим предметам. Многочисленные исследования смогли доказать, что аналогичный принцип действия имеют гравитационные поля. Этот феномен был впервые описан в законе Кулона.
Стандартная формула электрического поля выглядит так: F = d₁ d₂ / 4 π q q₀ r ².
Расшифровка:
d₁ и d₂ — параметры разрядов в кулонах.- q ₀ — этим символом может обозначаться только электрическая постоянная.
- q — показатель диэлектрической проницаемости.
- F — сила взаимодействия разных зарядов (может измеряться в ньютонах).
- r — расстояние между двумя рассматриваемыми объектами в метрах.
Благодаря формуле напряжённости электростатического поля можно определить тот факт, что чем дальше находиться от центра, тем меньше будет ощущаться его воздействие. Графически его можно изобразить в виде силовых линий. Итоговое их расположение напрямую зависит от геометрических параметров носителя.
На сегодняшний день специалисты научились выделять несколько разновидностей полей:
- Специфические неоднородное. Рассматривается поле вокруг шарообразного или же точечного заряда. Все силовые линии расходятся только в том случае, если этот параметр имеет положительное значение.
- Однородное поле. Все силовые линии располагаются исключительно параллельно друг другу. Эксперты утверждают, что идеальным является тот вариант, когда заряженные пластины бесконечны.
Индуцированные электрическим зарядом силовые линии относятся к замкнутому типу. Иная ситуация наблюдается только у вихревого поля, сформированного вокруг меняющегося магнитного потока.
Ключевые особенности
ЭП представлено особым видом материи, которая встречается вокруг заряженных элементарных частиц (протоны и электроны). Специалисты не один десяток лет занимаются изучением такого интересного явления. Им удалось доказать, что именно через ЭП передаётся влияние одного неподвижного заряда к другому. Итоговое воздействие происходит в строгом соответствии с известным во всём мире законом Кулона.
Так как в промежутке этого расстояния нет плотных тел, можно утверждать о существовании определённого невидимого поля. А так как оно связано со специфическими явлениями, то его начали называть электрическим. Такие поля существуют вокруг всех предметов, только из-за их невидимости и скомпенсированности взаимодействия друг на друга создаётся впечатление, что они проявляются.
Вам это будет интересно Клеммные колодки Wago для электрических соединений
Базовые параметры
Изобразить формулу напряжённости можно при помощи как математических закономерностей, так и графических приёмов. Последние характеристики относятся к векторной категории, имеющей определённое направление. Все эти нюансы крайне важны, так как во время решения практических задач часто приходится оперировать не стандартным модулем величины, а специфической проекцией вектора на заранее выбранную ось.
К основным свойствам ЭП можно отнести следующие факты:
- Оно может как притягивать, так и отталкивать.
Невидимость для невооружённого глаза (итоговое определение осуществляется через поведение пробного электрического заряда).- Всегда присутствует вокруг заряженных частиц, чего нельзя сказать о магнитном поле.
- Имеет векторное направление.
- Взаимодействует исключительно с ЭП.
- Отличается свойствами неоднородности и концентрации (напряжённость).
Электрическое поле можно определить при помощи обычного точного заряда. Если он будет направлен в интересующую точку пространства, то можно выяснить — присутствует ли в этом месте ЭП. Такой метод определения считается наиболее простым и понятным. Интенсивность излучаемого ЭП используется как обозначение напряжённости.
Влияющие на один и тот же заряд силы будут отличаться друг от друга по направлению и размеру в разных измеряемых точках.
Стоит отметить, что закон Кулона не адаптирован под современные требования. Для одной точки поля сила F будет прямо пропорциональна величине точечного заряда. На фоне этого эксперты провели множество исследований. Теперь принято считать силовой характеристикой единицы измерения напряжённости «Е». Этот параметр является векторной величиной. Найти напряжённость электрического поля можно в Ньютонах на Кулон.
Отдельно стоит учесть, что если ЭП образуется сразу несколькими зарядами, то общая напряжённость в определённой точке находится как общая геометрическая сумма.
Принцип суперпозиции напряженностей электрических полей
Если поле создано несколькими электрическими полями, то напряженность результирующего поля равна векторной сумме напряженностей отдельных полей:
$$bar{E}=sum_{i=1}^{n} bar{E}_{i}(2)$$
Допустим, что поле создается системой точечных зарядов и их распределение непрерывно, тогда результирующая напряженность находится как:
$$bar{E}=int d bar{E}(3)$$
интегрирование в выражении (3) проводят по всей области распределения заряда.
Точечные резервы
Потенциалом называется заряженный предмет или отдельная частица, размеры которой признаются ничтожными по сравнению с дистанциями до других зарядов в искомой системе. Точечный заряд идеализируется так же, как понятие материальной точки в механической теории. Заряд, который помещается в исследуемое тело для получения характеристик и выявления свойств, носит название пробного.
Такой потенциал является довольно малым, чтобы влиять на положение основных зарядов и искажать условия измеряемого поля. Этот элемент служит индикатором электромагнитного фона. Заряд в замкнутом электрическом поле никогда не изменится, если через поверхность не будут поступать заряженные элементарные частицы (закон Фарадея).
Если заряженная система 1 отдает потенциал системе 2, то размер получаемого заряда всегда равен величине отдаваемого количества. Заряд тела является симметричным относительно перемены порядка отсчета и не зависит от ускорения и начальной скорости.
Понравилась статья? Поделитесь ей
А какая Ваша оценка этой статьи?
12345
1 из 5
Доска почета
Чтобы сюда попасть — пройдите тест
«Материальные уравнения»
Для решения многих практических задач вполне достаточна ограниченная точность. С помощью «материальных» уравнений выполняют расчеты различных электрических цепей.
Уместный пример – закон Ома. Он был создан в ходе измерения электрических параметров. В начальном виде формула (Х=П/L+B) состояла из следующих компонентов:
- Х – показания измерительного устройства (гальванометра), включенного в разрыв электрической цепи;
- П – параметры источника питания, заставляющие стрелку прибора отклоняться на определенный угол;
- L – длина соединительных проводов;
- B – общие свойства установки.
Несложно догадаться, что в современном представлении это известный закон, показывающий взаимное влияние основных параметров полной электрической цепи:
I = E/R+r,
где:
- I – ток;
- E – ЭДС (напряжение);
- R и r – сопротивление подключенных компонентов и самого источника питания, соответственно.
Сила действия электромагнитного поля на заряженные частицы
Работа электрического поля
Полное силовое воздействие на частицу с учетом магнитной компоненты можно определить с помощью расширенной формулы:
F=Eq0+ q0v * B.
Здесь «*» обозначает умножение векторов скорости (v) заряженной частицы и магнитной индукции (B).
Эта формула напряженности поля предполагает единичный заряд точечного объекта. Вычисленные параметры аппроксимируют на крупные тела с применением соответствующих математических формул.
Закон обратных квадратов
Это соотношение – производная от рассмотренного выше закона Кулона. В идеальных условиях сила воздействия будет уменьшаться обратно пропорционально квадрату расстояния между зарядами.
Электрическая напряженность в быту
Вначале создается электрический потенциал для получения поля. Любой диэлектрик натирается о шерсть, волосы, используется, например, пластиковая ручка или эбонитовая палочка. На поверхности предмета создается потенциал, а вокруг возникает электрическое поле. Ручка с зарядом притягивает мелкие кусочки бумаги. Если подобрать правильное сочетание материала и размера предмета, то в темноте наблюдаются небольшие искры, которые появляются вследствие разрядов электричества.
Электростатический фон часто появляется рядом с экраном телевизора при включении или выключении оборудования. Это поле ощущается в виде поднятых волосков на теле. Избыточный потенциал, полученный проводником извне, сосредотачивается на поверхности предмета, как становится ясно из проведенных опытов. Перемещение заряженных частиц к внешней оболочке свидетельствует о появлении электростатического поля внутри проводника, что дает импульс к переброске.
Существует ошибочное мнение, что электрический фон в заряженном теле исчезает после окончания дислокации электронов, а поле действует определенный промежуток времени. Если бы точка зрения была правильной, то избыточный потенциал мог находиться в условиях равновесия и способствовал бы беспорядочному и хаотичному движению молекул. Такое явление никогда не наблюдается в проводниках и заряженных телах.
Изучение потенциала
Именно этот параметр считается распространённой характеристикой ЭП. Потенциал выступает в роли накопленной ценной энергии, используемой для перемещения различных зарядов. В итоге потенциал может весь израсходоваться, из-за чего его показатель будет равен нулю.
Процесс накопления происходит в обратном порядке. В качестве яркого примера можно использовать всё тот же заряд, но находящийся вне ЭП. Только когда определённая сила перемещает его внутрь и постепенно двигает там, появляется необходимый потенциал.
Если человек только столкнулся с этой отраслью и хочет в ней разобраться, то ему лучше представить обычную пружину. В спокойном состоянии у неё отсутствует какой-либо потенциал, из-за чего она может расцениваться только как небольшой металлический предмет. Но как только человек начнёт её постепенно сдавливать, будет образовываться потенциал. Если быстро отпустить пружину, то она мгновенно выпрямится и при этом сдвинет со своего пути все посторонние предметы.
Вам это будет интересно Удельное электрическое сопротивление металлических проводников
Этот пример ярко демонстрирует то, что уровень потенциала всегда будет соответствовать приложенным усилиям на перемещение заряда. В современной науке этот показатель можно измерить в вольтах.
Сферы применения
Стандартные характеристики ЭП обязательно включают в себя два свойства, которые активно применяются человечеством. Они могут образовывать универсальные ионы, а погруженные в определённую жидкость электроды позволяют без каких-либо усилий разделять их по функциям. Эксперты доказали, что универсальной и доступность электрических полей активно используется в различных отраслях:
- Очистка. В этой отрасли активно используется система качественного разделения разных жидкостей. Эта функция высоко ценится в очистных сооружениях. Ведь та вода, в которой содержится большое количество различного мусора, очень вредна для человека. При этом с такой жидкостью очень сложно что-то сделать, так как далеко не все фильтры могут справиться с проблемой. Именно в такой ситуации на помощь приходят ЭП. Они разделяют воду, за счёт чего отделяются загрязнения. Благодаря этому можно пользоваться быстрым и доступным способом очистки.
Медицина. Квалифицированные доктора практически ежедневно используют систему воздействия на поражённые ткани пациента направленными ионами. За счёт этого улучшается регенерация органа, убиваются микробы и очищается рана. К тому же уникальные характеристики и свойства ЭП позволяют им работать с большей частотой. Такой эффект широко востребован в медицине, так как за короткий промежуток времени можно повысить температуру некоторых отдельных частей тела, за счет чего восстанавливается кровоток, а также улучшается общее самочувствие пациента.- Химия. Без электрических полей просто невозможна нормальная работа некоторых отраслей промышленности, где нужно разделять разные жидкости. Такая наука активно используется в стандартных лабораторных условиях, но чаще всего её можно встретить в сфере массовой добычи нефти. Большой спрос спровоцирован тем, что природный материал часто содержит загрязняющие частицы, избавиться от которых традиционным способом весьма проблематично. Более экономичным является применение ЭП. Они позволяют быстро разделить нефть, убрав весь ненужный мусор, облегчив дальнейшую обработку.
Конечно, существует множество других вариантов применения формулы напряжённости электрического поля.
К примеру: эксперты могут применять такое явление в качестве беспроводной системы передачи тока к разным приборам. Но в большинстве случае все такие разработки носят экспериментальный и теоретический характер.
Электростатика
Этот раздел электродинамики описывает частный случай, когда заряженные тела находятся в статичном состоянии. Такая ситуация значительно упрощает расчеты. Для практического примера можно создать электростатический конденсатор.
Устанавливают две плоскости одинаковой размерности параллельно на небольшом расстоянии, разделяют слоем диэлектрика. Если создать разницу потенциалов, между поверхностями образуется поле. В такой конструкции накапливается электрический заряд. Какой будет емкость, можно узнать с помощью этой формулы:
C=Q/ (ϕ1-ϕ2)=Q/U=e*S/d,
где:
- e – проницаемость диэлектрика;
- e0 – электрическая постоянная (8,85*10-12 Ф/м);
- S – площадь пластин;
- D – расстояние между ними.
Конденсатор
Чтобы зарядить конденсатор до нужной емкости, надо затратить энергию W=(e*e0*E2/2)*S*D. На рисунке показано, как изменять рабочие параметры сборки при последовательном и параллельном соединении модулей.
Теорема Гаусса
Эта теорема определяет пропорциональность потока вектора напряженности электрического поля (Ф) заряду (Q), который заключен в произвольную поверхность замкнутого типа:
Ф=4π*Q.
Напряжённость электрического поля точечного заряда
В этом случае можно пользоваться рассмотренным выше законом Кулона. В следующих разделах представлены формулы для вычисления в разных системах единиц.
В единицах СИ
В этой системе базовой выбрана сила тока, поэтому кулон является производной величиной.
Основная формула:
F=k*(q1*q2/r122).
Здесь коэффициент k=1/(4π*e0).
Для системы СГС
Здесь, как и в предыдущем примере, выбран единичный заряд – «точка». Основные правила характеризуют физические процессы аналогично. Разница лишь в постоянных величинах. В данном случае коэффициент k обратно пропорционален диэлектрической проницаемости (е) среды.
Напряженность электрического поля произвольного распределения зарядов
В этом варианте для получения результата надо сложить вектора каждого заряда:
Еобщ=Е1+Е2+…+En.
Чтобы обеспечить непрерывность линии напряженности, берут интеграл соответствующей области. Построить распределение силовых линий можно с помощью расчета перемещения вектора по всем точкам.
Закон Кулона
В этом случае силовая характеристика электрического поля работает для точечного заряда, находящегося на расстоянии определённого радиуса от него. Если же взять этот показатель по стандартному модулю, то в итоге получится кулоновское поле.
Вам это будет интересно Прибор для электрика: тестер напряжения
Направление вектора напрямую зависит от имеющегося знака заряда. Если он плюсовой, то ЭП будет «передвигаться» по радиусу. В противном случае сам вектор будет направлен в сторону заряда.
Чтобы разобраться в ключевых особенностях закона, можно изучить основные рисунки и диаграммы, где изображены силовые линии. В учебниках основные характеристики ЭП объясняются довольно сложно. Если же для изучения этой темы использовать специализированную литературу, тогда нужно учесть, что при построении рисунков силовых линий их итоговая густота является пропорциональной модулю вектора напряжённости. Это своего рода подсказка от экспертов, которая может помочь во время экзамена или просто для контроля знаний.
Принцип воздействия
Свойства ЭП чаще всего постоянны и однообразны. Для планеты свойственен свой защитный фон, который на живые организмы практически никак не влияет. Незначительные проявления становятся заметными для человека только во время сильной грозы. В такой ситуации может даже казаться, что воздух дрожит от напряжения. Но для большинства людей это не представляет никакой угрозы.
Индустрия технологий не стоит на месте, благодаря чему специалисты изготавливают всё больше различных агрегатов, каждый из которых способен генерировать собственное ЭП. Показатель существенно превышает естественный фон, который составляет 0.5 кВ/м. Конечно, такая особенность не осталась незамеченной со стороны экспертов. В результате многочисленных проб они вывели максимально допустимое напряжение, которое не создаёт ограничений для человека. Его размер составляет 27 кВ/м.
Даже если включить сразу все бытовые устройства, максимальный показатель не будет превышен. Взрослый человек может получить небольшой процент негативного воздействия только при длительном нахождении возле высоковольтных проводов. В такой среде напряжение очень большое, из-за чего долго стоять или же работать на таком участке категорически запрещено. Специалисты, которые вынуждены по служебным обстоятельствам находиться в окружении таких ЭП, должны успевать выполнить все работы максимум за полтора часа.
Как направлен вектор электрического поля
Энергия электрического поля
Вектор поля надо направить в сторону от положительного заряда и в обратном направлении – к отрицательному. Это определение справедливо для одной точки. Так как идеальные условия отсутствуют, в реальной ситуации приходится учитывать взаимодействие зарядов и соответствующее образование силовых линий.
Силовые линии
Поле не является однородным, что демонстрируют с помощью разных расстояний между отдельными линиями. В примере с пластинами близкое расположение параллельных проводников позволяет обеспечить одинаковую напряженность в рабочей зоне. Все силовые линии бесконечные. Они начинаются на положительном заряде и заканчиваются на отрицательном. Таким образом, направление вектора напряженности будет всегда в сторону уменьшения потенциала.
Уравнения Максвелла
Индукция магнитного поля
Этими уравнениями описывают трансформацию электрической и магнитной составляющих полей с учетом плотностей тока (j) и заряда (p). Многие типовые задачи вполне можно решить с их помощью. Для исследования взаимного воздействия нескольких систем удобнее пользоваться матричным или интегральным представлением.
Линейные уравнения Максвелла
E = (k × |Q|)/r²
k = 9×(10^9) (в единицах Н.м²/Кл²)
Q – заряд, создающий поле,
r – расстояние точки А от заряда Q
Пример:
Вычислите силу и направление электрического поля (E) от точечного заряда 2,00 нКл (нанокулонов) на расстоянии 5 мм от заряда.
Формула: E = (k × |Q|)/r²
Помним, что k = 9×(10^9) (в единицах Н.м²/ Кл²)
E = (9×(10^9) Н.м²/ Кл²) × (2 × 10^(−9) Кл) / ((5 × 10^(−3) м)²) ≈ 7,19 × 10^5 Н/Кл
Вектор напряжённости
Векторы напряженности поля точечного заряда можно изобразить таким образом.
Вектор напряжённости в данной точке направлен вдоль прямой, соединяющей точку с зарядом, и важно учитывать, что:
- направление зависит от q: от заряда при q > 0 и к заряду при q
Источник
Напряженность поля в диэлектрике
Напряженность поля $bar{E}$ в диэлектрике равна векторной сумме
напряженностей полей, создаваемых свободными зарядами $bar{E}_0$ и
связанными (поляризационными зарядами) $bar{E}_p$:
$$bar{E}=bar{E}_{0}+bar{E}_{p}(4)$$
В том случае, если вещество, которое окружает свободные заряды однородный и изотропный диэлектрик, то напряженность
$bar{E}$ равна:
$$bar{E}=frac{bar{E}_{0}}{varepsilon}(5)$$
где $varepsilon$ – относительная диэлектрическая проницаемость вещества в исследуемой точке
поля. Выражение (5) обозначает то, что при заданном распределении зарядов напряженность электростатического поля в однородном изотропном
диэлектрике меньше, чем в вакууме в $varepsilon$ раз.
Системы единиц
Отмеченные ниже различия надо учитывать, чтобы корректно пользоваться формулами, справочными данными. В современной системе СИ напряженность измеряется в вольтах на метр. Однако до сих пор сохраняется альтернативный вариант (СГС), точнее две подсистемы: СГСМ и СГСЭ. Измерять параметры без ошибок помогут следующие данные.
Таблица пересчета напряженности
СИ | 1 | Вольт/метр (Ньютон/Кулон) |
СГСМ | 106 | Абвольт/см |
СГСЭ | 10^6с^-1 | Статвольт/см |
Напряженность электрического поля — понятие, формула, единица измерения и значение
Связь напряженности и потенциала
В общем случае напряженность электрического поля связана с потенциалом как:
$$bar{E}=-operatorname{grad} varphi-frac{partial bar{A}}{partial t}(7)$$
где $varphi$ – скалярный потенциал,
$bar{a}$ – векторный потенциал.
Для стационарных полей выражение (7) трансформируется в формулу:
$$bar{E}=-operatorname{grad} varphi(8)$$
Расчет показателей
Напряженность поля, которое возникает под действием системы зарядов в искомой точке исследуемой области, равняется векторному результату аналогичных показателей всех полей, создаваемых отдельными потенциалами.
Формула напряженности электрического поля выглядит как Е= F / q, где параметры обозначаются буквами:
- Е — напряженность поля.
- F — сила, которая влияет на заряд, находящийся в определенной точке.
- Q — потенциал отдельной частицы, измеряется в кулонах.
Направление вектора Е должно совпадать с курсом действия силы, влияющей на положительный заряд, и находится в противоположном русле к давлению, которое оказывается на отрицательную частицу.
Это свойство означает, что действие поля происходит по принципу суперпозиции, который гласит:
- результат влияния на отдельную микрочастицу нескольких наружных сил равняется векторной сумме обособленных влияний;
- каждое сложное передвижение раскладывается на несколько простых.
Иногда принцип принимает другие формулировки, которые по смыслу представляют собой эквивалентную теорию. В соответствии с ней, для нахождения энергии взаимного смещения в системе множества частиц берется сумма активности парных сочетаний между всеми реальными парами зарядов. Уравнения, которые участвуют в описании поведения системы, являются линейными формулами по количеству микрочастиц.
Общее понятие
Электрическое поле представляет собой определенный вид материи, возникающий вокруг частиц или тел, у которых присутствует электрический заряд. В свободной форме поле существует при реформировании магнитного фона, например, при действии электромагнитных волн. Область воздействия не наблюдается непосредственно, но проявляется в результате влияния силы на тела с зарядами.
Электромагнитный фон рассматривается в форме математической модели, которая описывает размер напряженности в заданной точке участка. Поле не является вариантом вещества и относится к вопросам из метафизической области.
Классическая наука в вопросах рассмотрения объектов, которые по размеру больше атома, руководствуется теорией взаимодействия на электрическом участке. Поле считается отдельной составляющей общего электромагнитного фона. В теории квантовой электродинамики оно рассматривается в качестве элемента слабого взаимодействия.
Присутствие поля заключается в измерении числа свободных носителей при действии электростатического фона на плоскость проводящей среды. Этот эффект применяется при работе полевых радиоприемников. Поле воздействует силой на стационарные (относительно зрителя) заряженные частицы или тела. Если предмет является неподвижным в исследуемой сфере, то он не ускоряется при действии силы. Подвижные заряженные элементы ускоряются под влиянием энергетического и магнитного поля.
Напряженностью поля называется векторная размерность, которая определяется отношением действующей силы на положительно заряженную частицу, к величине отдельного потенциала. Вектор напряженности электрического поля совпадает в разных точках внутри исследуемого шара с направлением приложения силы. Величина измеряется в вольтах на метр (в/м) в соответствии с Международной СЕ.
Читайте также: Номинальное фазное напряжение кв как рассчитать
Зависимость между двумя зарядами
Напряженность поля по аналогии с механическим действием характеризуется не только численной величиной, но и зависит от пространственного направления, т. е. представляет собой векторную константу. Если заряд одной частицы принять за единицу, то получится сила, которая действует на единицу потенциала.
Направленность точечного заряда с положительным значением идет по линии радиуса. Напряженность в разноудаленных точках от проводника всегда отличается и уменьшается при удалении в обратно пропорциональной зависимости к расстоянию в квадрате. Для расчета суммирующего показателя интенсивности значение напряженностей складываются, так как силы направляются одна к другой под углом. Такое вычисление происходит по закону параллелограмма. Этим же способом рассчитывается модуль напряженности в разных точках сферы при одном или нескольких зарядах.
Положительный заряд электричества отталкивается по прямой линии, продолжающей направление радиуса, если он находится в поле с плюсовым потенциалом. Вырисовывается совокупность радиальных линий, которые направляются в разные стороны от шара при перемещении заряда по различным точкам области и после отметок двигательных траекторий. Полученные воображаемые прямые являются силовыми электрическими линиями, по которым передвигается положительно заряженная частица с отсутствием инерции.
В электрически заряженном поле обнаруживается множество силовых линий. С их помощью графически показывается величина напряженности и направление действия электрического потенциала в конкретной точке поля. Иногда используется прием проведения через каждый см 2 площади, перпендикулярной к силовым линиям на заданном участке пространства, такого количества линий, чтобы их суммарное значение соответствовало напряженности. Величина интенсивности в этой части поля меняет показатель в зависимости от густоты потока силовых векторов.
Однородное поле
Электростатическое поле называется равномерным или однородным, если имеет одинаковые показатели напряжения в различных пространственных областях по направлению и величине. Примером служит поле между большими заряженными пластинами, которые располагаются параллельно одна к другой.
Для изображения применяются прямые линии:
- параллельные друг другу;
- имеющие векторный показатель;
- располагающиеся равномерно и на одинаковом расстоянии.
Одноименные потенциалы отталкиваются при взаимодействии, поэтому электрический заряд может существовать только снаружи проводниковой плоскости. Объем электричества, который действует на единицу площади тела, называется поверхностной плотностью.
Величина показателя зависит:
- от общего количественного значения электричества на внешней площади тела;
- от формы поверхности используемого проводника.
Электрический заряд раздается равномерно при использовании круглых проводников большой длины или сферических фигур правильной формы. В этом случае поверхностная плотность потенциала будет одинаковой на всех участках площади тела. Если тело отличается неправильной геометрией, то заряд делится с нарушением равномерности. Больший показатель плотности определяется на вступающих частях и уменьшается внутри углублений и впадин.
Самый большой показатель поверхностной насыщенности проявляется на острых кромках и ребрах. Части потенциала на таких экстремальных участках отталкиваются и стремятся сбросить заряды с поверхности в проблемных областях. На острие скапливается значительная порция заряда, поэтому образовывается электрическое поле большой силы.
Возникает эффект конденсатора. Под его действием окружающий воздух или иной диэлектрик ионизируется и становится проводником. В этом случае наблюдается «стекание» потенциала с острия.
При изготовлении проводников тщательно убирают все острые выступы и концы, чтобы избежать избыточной электризации в случае применения высокого напряжения.
Что такое напряженность поля точечного заряда?
Напряженность поля точечного заряда определяется формулой:
Единицы измерения напряженности электрического поля
Основной единицей измерения напряженности электрического поля в системе СИ является: [E]=В/м(Н/Кл)
Силовые линии
Чтобы изобразить электростатические поля графически, необходимо задействовать понятие силовых линий.
Определение 1
Силовые линии – это линии, касательные к которым в каждой точке поля совпадают с направлениями векторов напряженности в этих точках.
Такие линии в электростатическом поле разомкнутые. Они начинаются на положительных зарядах и заканчивают на отрицательных. Реже уходят в бесконечность или возвращаются из нее. Силовые линии поля не могу пересекаться.
Вектор напряженности электрического поля подчиняется принципу суперпозиции, а именно:
E→=∑i=1nE→i.
Результирующий вектор напряженности сводится к нахождению векторной суммы напряженностей, составляющих его «отдельные» поля. При распределении непрерывного заряда, поиск суммарной напряженности поля производится по формуле:
E→=∫dE→.
Интегрирование E→=∫dE→ проводится по области распределения зарядов. Если их распределение идет по линии (τ=dqdl — линейная плотность распределения заряда), то интегрирование E→=∫dE→ тоже. Когда распределение зарядов идет по поверхности и поверхностная плоскость обозначается как σ=dqdS, тогда интегрируют по поверхности.
Интегрирование по объему выполняется, если имеется объемное распределение заряда:
ρ=dqdV, где ρ — объемная плотность распределения заряда.