Как расшифровать маркировку конденсатора и узнать его ёмкость?

Как расшифровать маркировку конденсатора и узнать его ёмкость?

Что такое конденсатор?

Прибор, который накапливает электроэнергию в виде электрических зарядов, называется конденсатором.

Количество электричества или электрический заряд в физике измеряют в кулонах (Кл). Электрическую ёмкость считают в фарадах (Ф).

Уединенный проводник электроёмкостью в 1 фараду — металлический шар с радиусом, равным 13 радиусам Солнца. Поэтому конденсатор включает в себя минимум 2 проводника, которые разделяет диэлектрик. В простых конструкциях прибора — бумага.

Что такое конденсатор, виды конденсаторов и их применение

Работа конденсатора в цепи постоянного тока осуществляется при включении и выключении питания.Только в переходные моменты меняется потенциал на обкладках.

Конденсатор в цепи переменного тока перезаряжается с частотой, равной частоте напряжения источника питания. В результате непрерывных зарядов и разрядов ток проходит через элемент. Выше частота — быстрее перезаряжается прибор.

Сопротивление цепи с конденсатором зависит от частоты тока. При нулевой частоте постоянного тока величина сопротивления стремится к бесконечности. С увеличением частоты переменного тока сопротивление уменьшается.

Принцип работы конденсаторов

При подсоединении цепи к источнику электрического тока через конденсатор начинает течь электрический ток. В начале прохождения тока через конденсатор его сила имеет максимальное значение, а напряжение – минимальное. По мере накопления устройством заряда сила тока падает до полного исчезновения, а напряжение увеличивается.

В процессе накопления заряда электроны скапливаются на одной пластинке, а положительные ионы – на другой. Между пластинами заряд не перетекает из-за присутствия диэлектрика. Так устройство накапливает заряд. Это явление называется накоплением электрических зарядов, а конденсатор –накопителем электрического поля.

Характеристики и свойства

Что такое конденсатор, виды конденсаторов и их применение

К параметрам конденсатора, которые используют для создания и ремонта электронных устройств, относят:

  1. Ёмкость — С. Определяет количество заряда, которое удерживает прибор. На корпусе указывается значение номинальной ёмкости. Для создания требуемых значений элементы включают в цепь параллельно или последовательно. Эксплуатационные величины не совпадают с расчетными.
  2. Резонансная частота — fр. Если частота тока больше резонансной, то проявляются индуктивные свойства элемента. Это затрудняет работу. Чтобы обеспечить расчетную мощность в цепи, конденсатор разумно использовать на частотах меньше резонансных значений.
  3. Номинальное напряжение — Uн. Для предупреждения пробоя элемента рабочее напряжение устанавливают меньше номинального. Параметр указывается на корпусе конденсатора.
  4. Полярность. При неверном подключении произойдет пробой и выход из строя.
  5. Электрическое сопротивление изоляции — Rd. Определяет ток утечки прибора. В устройствах детали располагаются близко друг к другу. При высоком токе утечки возможны паразитные связи в цепях. Это приводит к неисправностям. Ток утечки ухудшает емкостные свойства элемента.
  6. Температурный коэффициент — TKE. Значение определяет, как ёмкость прибора меняется при колебаниях температуры среды. Параметр используют, когда разрабатывают устройства для эксплуатации в тяжелых климатических условиях.
  7. Паразитный пьезоэффект. Некоторые типы конденсаторов при деформации создают шумы в устройствах.

Виды конденсаторов

Емкостные элементы классифицируют по типу диэлектрика, применяемого в конструкции.

Что такое конденсатор, виды конденсаторов и их применение

Физические величины, используемые в маркировке емкости керамических конденсаторов

Для определения величины емкости в международной системе единиц (СИ) используется Фарад (Ф, F). Для стандартной электрической схемы это слишком большая величина, поэтому в маркировке бытовых конденсаторов используются более мелкие единицы.

Таблица единиц емкости, применяемых для бытовых керамических конденсаторов

Наименование единицы Варианты обозначений Степень по отношению к Фараду
Микрофарад Microfarad мкФ, µF, uF, mF 10-6F
Нанофарад Nanofarad нФ, nF 10-9F
Пикофарад Picofarad пФ, pF, mmF, uuF 10-12F

Редко применяется внемаркировочная единица миллифарад – 1 мФ (10-3Ф).

Цифровая маркировка конденсаторов онлайн калькулятор

  • Главная
  • Форум
  • Новости
  • Блог
  • Почта
  • Обратная связь
  • Ссылки
  • Сотрудничество
  • Авторам
  • Вебмастерам
  • Расчёты онлайн
    • Калькулятор номинала SMD резистора
  • Генератор символов для LCD HD44780
  • Расчёт делителя напряжения
  • Определение сопротивлений резисторов по цветовой маркировке
  • Расчёт сопротивления резистора для светодиода
  • Расчёт ширины дорожки печатной платы
  • Цветовая маркировка резисторов, конденсаторов и индуктивностей
  • Расчёт резонансной частоты колебательного контура
  • Калькулятор фьюзов AVR
  • Расчёт DC-DC преобразователя на базе MC34063A
  • Расчёт частоты таймера 555
  • Расчёт линейного стабилизатора
  • Конвертер даты и времени в UNIX формат и обратно
  • Cхемы
  • Цифровые устройства
    • Автоматика
  • Программаторы
  • Таймеры, часы, счётчики
  • Для ПК
  • Для дома
  • Игрушки
  • Аналоговые устройства
    • Передатчики и приёмники
  • Генераторы
  • Усилители
  • Видео и ТВ
  • Регуляторы
  • Звукотехника
    • Усилители
  • Фильтры, эквалайзеры
  • Для музыкантов
  • Акустика
  • Разное
  • Светотехника
    • Мигалки
  • Освещение
  • Светоэффекты
  • Детектирование
    • Металлоискатели
  • Измерения
    • Осциллографы
  • Измерители L-C-R
  • Вольт/Амперметры
  • Термометры
  • Питание
    • Блоки питания
  • Преобразователи и ИБП
  • Зарядные устройства
  • Альтернативная энергетика
  • Arduino
  • Авто и мото
  • Станки с ЧПУ
  • Статьи
  • Антенны
    • WI-FI
  • Обучалка
    • Аналоговая техника
  • Цифровая техника
  • Микроконтроллеры
  • Аудиотехника
  • Видеотехника
  • Программные пакеты
  • Измерения
  • Разное
  • Секреты самодельщика
  • Файлы
  • Программы
    • CADs
  • Компиляторы, программаторы
  • Для печатных плат
  • Схемы, панели и шкалы
  • Расчёты
  • Разное
  • Книги
    • Verilog и VHDL
  • Цифровые устройства и МП
  • Математический анализ
  • Основы теории цепей
  • Теория вероятностей
  • РТ цепи и сигналы
  • Метрология
  • Микроконтроллеры
  • Программирование
  • Справочники
  • Схемотехника
  • Устройства СВЧ и антенны
  • РПДУ и УГФС
  • РПУ и УПиОС
  • РТС и СТРТС
  • Телевидение и видеотехника
  • Журналы
    • Радиомир
  • Радиоаматор
  • Радиолоцман
  • Радиолюбитель
  • Радиоежегодник
  • Радиоконструктор
  • Учебные материалы
    • Математический анализ
  • Теория вероятностей
  • РТ цепи и сигналы
  • Радиоавтоматика
  • Метрология
  • ОКиТПРЭС
  • Гуманитарные науки
  • Электроника
  • Цифровые устройства и МП
  • Электродинамика и РРВ
  • Схемотехника
  • УГиФС и РПДУ
  • Основы теории скрытности
  • Устройства СВЧ и антенны
  • УПиОС и РПУ
  • ЭПУ РЭС
  • Оптические устройства
  • ОКПиМРЭС
  • ССПРЭУС
  • РТС и СТРТС
  • СИТ
  • Телевидение и видеотехника
  • Разное
  • Документация
  • Микросхемы
    • 140
  • 143
  • 148
  • 153
  • 154
  • 155
  • Разъёмы
    • Типы разъёмов
  • Распиновка разъёмов
  • Datasheets
    • Analog Devices
  • Atmel
  • Microchip
  • NXP Semiconductors
  • Texas Instruments
  • Маркировка компонентов
  • Численные и численно-буквенные коды в маркировках конденсаторов

    Обозначение наносится на корпус элемента. Первым обычно указывается номинальное напряжение в вольтах, за числами могут следовать буквы: В, V, VDC или VDCW. На корпуса небольшой площади значение номинального напряжения наносят в закодированном виде. Если указание на допустимую величину напряжения в цепи отсутствует, это означает, что конденсатор можно использовать только в низковольтных схемах. На корпусе должны быть знаки «+» и «-», указывающие на полярность подсоединения элемента в цепи. Несоблюдение указанной полярности может привести к полному выходу детали из строя.

    Таблица для расшифровки буквенных кодов величины номинального напряжения керамических конденсаторов

    Напряжение, В Код Напряжение, В Код
    1 I 63 K
    1,6 R 80 L
    3,2 A 100 N
    4 C 125 P
    6,3 B 160 Q
    10 D 200 Z
    16 E 250 W
    20 F 315 X
    25 G 400 Y
    32 H 450 U
    40 C 500 V
    50 J

    Вторая позиция – знак фирмы-производителя или температурный коэффициент емкости (ТКЕ), который может отсутствовать. ТКЕ обычно обозначается буквенным кодом.

    Таблица буквенных кодов ТКЕ для маркировки керамических конденсаторов с ненормируемым ТКЕ

    Допуск при -60°C…+80°C, +/-, % Буквенный код Допуск при -60°C…+80°C, +/-, % Буквенный код
    20 Z 70 E
    30 D 90 F

    Третья позиция – номинальная емкость, которая может указываться несколькими способами.

    Кодовая маркировка электролетических конденсаторов для поверхностного монтажа

    Для конденсаторов таких фирм как «Panasonic», «Hitachi» и др. маркировка осуществляется 3-мя основными способами:

    1. Маркировка 2 или 3 символами

    Код содержит два или три знака (буквы или цифры), обозначающие рабочее напряжение и номинальную емкость. Причем буквы обозначают напряжение и емкость, а цифра указывает множитель. В случае двухзначного обозначения не указывается код рабочего напряжения.

    При такой маркировки код содержит 2 или 3 символа по ним можно узнать номинальную емкость и рабочее напряжение. Буквы означают напряжение и емкость, цифра показываем множитель. Если маркировка содержит 2 символа, то рабочее напряжение не указывается. Соответствие кода маркировки и значение емкости  можно посмотреть в таблице ниже:

    КодЕмкость [мкФ]Напряжение [В]
    А6 1,0 16/35
    А7 10 4
    АА7 10 10
    АЕ7 15 10
    AJ6 2,2 10
    AJ7 22 10
    AN6 3,3 10
    AN7 33 10
    AS6 4,7 10
    AW6 6,8 10
    СА7 10 16
    СЕ6 1,5 16
    СЕ7 15 16
    CJ6 2,2 16
    CN6 3,3 16
    CS6 4,7 16
    CW6 6,8 16
    DA6 1,0 20
    DA7 10 20
    DE6 1,5 20
    DJ6 2,2 20
    DN6 3,3 20
    DS6 4,7 20
    DW6 6,8 20
    Е6 1,5 10/25
    ЕА6 1,0 25
    ЕЕ6 1,5 25
    EJ6 2,2 25
    EN6 3,3 25
    ES6 4,7 25
    EW5 0,68 25
    GA7 10 4
    GE7 15 4
    GJ7 22 4
    GN7 33 4
    GS6 4,7 4
    GS7 47 4
    GW6 6,8 4
    GW7 68 4
    J6 2,2 6,3/7/20
    JA7 10 6,3/7
    JE7 15 6,3/7
    JJ7 22 6,3/7
    JN6 3,3 6,3/7
    JN7 33 6,3/7
    JS6 4,7 6,3/7
    JS7 47 6,3/7
    JW6 6,8 6,3/7
    N5 0,33 35
    N6 3,3 4/16
    S5 0,47 25/35
    VA6 1,0 35
    VE6 1,5 35
    VJ6 2,2 35
    VN6 3,3 35
    VS5 0,47 35
    VW5 0,68 35
    W5 0,68 20/35

    2. Маркировка 4 символами

    Код содержит четыре знака (буквы и цифры), обозначающие емкость и рабочее напряжение. Буква, стоящая вначале, обозначает рабочее напряжение, последующие знаки — номинальную емкость в пикофарадах (пФ), а последняя цифра — количество нулей.

    Возможны 2 варианта кодировки емкости: а) первые две цифры указывают номинал в пикофарадах, третья — количество нулей; б) емкость указывают в микрофарадах, знак m выполняет функцию десятичной запятой. Ниже приведены примеры маркировки конденсаторов емкостью 4.7 мкФ и рабочим напряжением 10 В.

    Способы маркировки емкости конденсатора

    На деталях советского производства, чаще всего имеющих довольно большую площадь поверхности, наносились числовые значения емкости, ее единица измерения и номинальное напряжение в вольтах. Например, 23 пФ, то есть 23 пикофарада.

    Способы маркировки емкости конденсатора

    Расшифровка маркировки обозначений современных керамических конденсаторов отечественного и зарубежного производства – мероприятие более сложное. 

    Какие параметры могут быть указаны в маркировке

    Для конденсаторов важны три параметра:

    • ёмкость;
    • номинальное (рабочее) напряжение;
    • допуск по отклонению ёмкости.

    С первыми двумя всё ясно. Вот только стоит заметить, что на некоторых конденсаторах номинальное напряжение может быть не указано. Если предполагается высокое напряжение, надо смотреть в данных производителя.

    Ёмкость

    Первым и самым важным параметром конденсатора является емкость. В связи с этим значение данной характеристики располагается на первом месте и кодируется буквенно-цифровым обозначением. Так как единицей измерения емкости является фарада, то в буквенном обозначении присутствует либо символ кириллического алфавита «Ф», либо символ латинского алфавита «F».

    Так как фарад – большая величина, а используемые в промышленности элементы имеют намного меньшие номиналы, то и единицы измерения имеют разнообразные уменьшительные префиксы (мили- , микро- , нано- и пико). Для их обозначения используют также буквы греческого алфавита.

    • 1 миллифарад равен 10-3 фарад и обозначается 1мФ или 1mF.
    • 1 микрофарад равен 10-6 фарад и обозначается 1мкФ или 1F.
    • 1 нанофарад равен 10-9 фарад и обозначается 1нФ или 1nF.
    • 1 пикофарад равен 10-12 фарад и обозначается 1пФ или 1pF.

    Если значение емкости выражено дробным числом, то буква, обозначающая размерность единиц измерения, ставится на месте запятой. Так, обозначение 4n7 следует читать как 4,7 нанофарад или 4700 пикофарад, а надпись вида n47 соответствует емкости в 0,47 нанофарад или же 470 пикофарад.

    Как расшифровать маркировку конденсатора и узнать его ёмкость?

    В случае, когда на конденсаторе не обозначен номинал, то целое значение говорит о том, что емкость указана в пикофарадах, например, 1000, а значение, выраженное десятичной дробью, указывает на номинал в микрофарадах, например 0,01.

    Как расшифровать маркировку конденсатора и узнать его ёмкость?

    Ёмкость конденсатора, указанная на корпусе, редко соответствует фактическому параметру и отклоняется от номинального значения в пределах некоторого диапазона. Точное значение емкости, к которой стремятся при изготовлении конденсаторов, зависит от материалов, используемых для их производства. Разброс параметров может лежать в пределах от тысячных долей до десятков процентов.

    Величина допустимого отклонения ёмкости указывается на корпусе конденсатора после номинального значения путем проставления буквы латинского или русского алфавита. К примеру, латинская буква J (русская буква И в старом обозначении) обозначает диапазон отклонения 5% в ту или иную стороны, а буква М (русская В) – 20%.

    Как расшифровать маркировку конденсатора и узнать его ёмкость?

    Такой параметр, как температурный коэффициент емкости, входит в состав маркировки достаточно редко и наносится в основном на малогабаритные элементы, применяемые в электрических схемах времязадающих цепей. Для идентификации используется либо буквенно-цифровая, либо цветовая система обозначений.

    Встречается и комбинированная буквенно-цветовая маркировка. Варианты её настолько разнообразны, что для безошибочного определения значения данного параметра для каждого конкретного типа конденсатора требуется обращение к ГОСТам или справочникам по соответствующим радиокомпонентам.

    Номинальное напряжение

    Напряжение, при котором конденсатор будет работать в течение установленного срока службы с сохранением своих характеристик, называется номинальным напряжением. Для конденсаторов, имеющих достаточные размеры, данный параметр наносится непосредственно на корпус элемента, где цифры указывают на номинальное значение напряжения, а буквы обозначают в каких единицах измерения оно выражено.

    Как расшифровать маркировку конденсатора и узнать его ёмкость?

    Например, обозначение 160В или 160V показывает, что номинальное напряжение равно 160 вольт. Более высокие напряжения указываются в киловольтах – kV. На малогабаритных конденсаторах величину номинального напряжения кодируют одной из букв латинского алфавита. К примеру, буква I соответствует номинальному напряжению в 1 вольт, а буква Q – 160 вольт.

    Как расшифровать маркировку конденсатора и узнать его ёмкость?

    Дата выпуска

    Согласно «ГОСТ 30668-2000 Изделия электронной техники. Маркировка», указываются буквы и цифры, обозначающие год и месяц выпуска.

    Дата, когда было осуществлено то или иное производство, может отображаться не только в виде цифр, но и в виде букв. Каждый год имеет соотношение с буквой из латинского алфавита. Месяца с января по сентябрь обозначаются цифрами от одного до девяти. Октябрь месяц имеет соотношение с цифрой ноль. Ноябрю соответствует буква латинского типа N, а декабрю – D.

    ГодКод

    1990 A
    1991 B
    1992 C
    1993 D
    1994 E
    1995 F
    1996 H
    1997 I
    1998 K
    1999 L
    2000 M
    2001 N
    2002 P
    2003 R
    2004 S
    2005 T
    2006 U
    2007 V
    2008 W
    2009 X
    2010 A
    2011 B
    2012 C
    2013 D
    2014 E
    2015 F
    2016 H
    2017 I
    2018 K
    2019 L

    Расположение маркировки на корпусе

    Маркировка отыгрывает важную роль на любой продукции. Зачастую она наносится на первую строку на корпусе и имеет значение емкости. Та же строка предполагает размещение на ней так называемого значения допуска. Если же на этой строке не помещаются оба нанесения, то это может сделать на следующей.

    По аналогичной системе осуществляется нанесение конденсатов пленочного типа. Расположение элементов должно располагаться по определенному регламенту, который произведен ГОСТ или ТУ на элемент индивидуального типа.

    Как расшифровать маркировку конденсатора и узнать его ёмкость?

    Таблица маркировки конденсаторов

    Емкость конденсаторов может измеряться в микрофарадах (uF), нанофарадах (nF), пикофарадах (pF) и обозначаеться специальным кодом. Данная таблица поможет вам разобраться в маркировке обозначений при различных измерительных номиналах и подобрать нужные аналоги для замены. Существует универсальный измерительный прибор для радиокомпонентов. Может измерять индуктивности, ESR и потери электролитических конденсаторов. Проверяет и транзисторы (включая MOSFET), диоды, стабилитроны, кварцы. Тип деталей определяется автоматически и выводит значения на дисплей. В этом обзоре ESR тестер я описывал этот прибор. 

    uF (мкФ)nF (нФ)pF (пФ)Code (Код)

    1uF 1000nF 1000000pF 105
    0.82uF 820nF 820000pF 824
    0.8uF 800nF 800000pF 804
    0.7uF 700nF 700000pF 704
    0.68uF 680nF 680000pF 624
    0.6uF 600nF 600000pF 604
    0.56uF 560nF 560000pF 564
    0.5uF 500nF 500000pF 504
    0.47uF 470nF 470000pF 474
    0.4uF 400nF 400000pF 404
    0.39uF 390nF 390000pF 394
    0.33uF 330nF 330000pF 334
    0.3uF 300nF 300000pF 304
    0.27uF 270nF 270000pF 274
    0.25uF 250nF 250000pF 254
    0.22uF 220nF 220000pF 224
    0.2uF 200nF 200000pF 204
    0.18uF 180nF 180000pF 184
    0.15uF 150nF 150000pF 154
    0.12uF 120nF 120000pF 124
    0.1uF 100nF 100000pF 104
    0.082uF 82nF 82000pF 823
    0.08uF 80nF 80000pF 803
    0.07uF 70nF 70000pF 703
    0.068uF 68nF 68000pF 683
    0.06uF 60nF 60000pF 603
    0.056uF 56nF 56000pF 563
    0.05uF 50nF 50000pF 503
    0.047uF 47nF 47000pF 473
    0.04uF 40nF 40000pF 403
    0.039uF 39nF 39000pF 393
    0.033uF 33nF 33000pF 333
    0.03uF 30nF 30000pF 303
    0.027uF 27nF 27000pF 273
    0.025uF 25nF 25000pF 253
    0.022uF 22nF 22000pF 223
    0.02uF 20nF 20000pF 203
    0.018uF 18nF 18000pF 183
    0.015uF 15nF 15000pF 153
    0.012uF 12nF 12000pF 123
    0.01uF 10nF 10000pF 103
    0.0082uF 8.2nF 8200pF 822
    0.008uF 8nF 8000pF 802
    0.007uF 7nF 7000pF 702
    0.0068uF 6.8nF 6800pF 682
    0.006uF 6nF 6000pF 602
    0.0056uF 5.6nF 5600pF 562
    0.005uF 5nF 5000pF 502
    0.0047uF 4.7nF 4700pF 472
    0.004uF 4nF 4000pF 402
    0.0039uF 3.9nF 3900pF 392
    0.0033uF 3.3nF 3300pF 332
    0.003uF 3nF 3000pF 302
    0.0027uF 2.7nF 2700pF 272
    0.0025uF 2.5nF 2500pF 252
    0.0022uF 2.2nF 2200pF 222
    0.002uF 2nF 2000pF 202
    0.0018uF 1.8nF 1800pF 182
    0.0015uF 1.5nF 1500pF 152
    0.0012uF 1.2nF 1200pF 122
    0.001uF 1nF 1000pF 102
    0.00082uF 0.82nF 820pF 821
    0.0008uF 0.8nF 800pF 801
    0.0007uF 0.7nF 700pF 701
    0.00068uF 0.68nF 680pF 681
    0.0006uF 0.6nF 600pF 621
    0.00056uF 0.56nF 560pF 561
    0.0005uF 0.5nF 500pF 52
    0.00047uF 0.47nF 470pF 471
    0.0004uF 0.4nF 400pF 401
    0.00039uF 0.39nF 390pF 391
    0.00033uF 0.33nF 330pF 331
    0.0003uF 0.3nF 300pF 301
    0.00027uF 0.27nF 270pF 271
    0.00025uF 0.25nF 250pF 251
    0.00022uF 0.22nF 220pF 221
    0.0002uF 0.2nF 200pF 201
    0.00018uF 0.18nF 180pF 181
    0.00015uF 0.15nF 150pF 151
    0.00012uF 0.12nF 120pF 121
    0.0001uF 0.1nF 100pF 101
    0.000082uF 0.082nF 82pF 820
    0.00008uF 0.08nF 80pF 800
    0.00007uF 0.07nF 70pF 700
    0.000068uF 0.068nF 68pF 680
    0.00006uF 0.06nF 60pF 600
    0.000056uF 0.056nF 56pF 560
    0.00005uF 0.05nF 50pF 500
    0.000047uF 0.047nF 47pF 470
    0.00004uF 0.04nF 40pF 400
    0.000039uF 0.039nF 39pF 390
    0.000033uF 0.033nF 33pF 330
    0.00003uF 0.03nF 30pF 300
    0.000027uF 0.027nF 27pF 270
    0.000025uF 0.025nF 25pF 250
    0.000022uF 0.022nF 22pF 220
    0.00002uF 0.02nF 20pF 200
    0.000018uF 0.018nF 18pF 180
    0.000015uF 0.015nF 15pF 150
    0.000012uF 0.012nF 12pF 120
    0.00001uF 0.01nF 10pF 100
    0.000008uF 0.008nF 8pF 080
    0.000007uF 0.007nF 7pF 070
    0.000006uF 0.006nF 6pF 060
    0.000005uF 0.005nF 5pF 050
    0.000004uF 0.004nF 4pF 040
    0.000003uF 0.003nF 3pF 030
    0.000002uF 0.002nF 2pF 020
    0.000001uF 0.001nF 1pF 010

    Маркировка конденсаторов тремя цифрами

    При такой маркировке две первые цифры определяют мантиссу емкости, а последняя — показатель степени по основанию 10, другими словами в какую степень нам нужно возвести число 10, или еще проще сколько нулей нужно добавить после первых 2-х чисел.

    Полученное таким образом число соответствует емкости в пикофарадах. Если первая цифра «0», то емкость менее 1пФ (010 = 1.0пФ). Если последняя цифра равна «9» то это означает что показатель степени равен «-1» что мы должны мантиссу умножить на 10 в степени «-1» или другими словами разделить ее на 10.

    кодпикофарады, пФ, pFнанофарады, нФ, nFмикрофарады, мкФ, μF

    109 1.0 пФ
    159 1.5 пФ
    229 2.2 пФ
    339 3.3 пФ
    479 4.7 пФ
    689 6.8 пФ
    100 10 пФ 0.01 нФ
    150 15 пФ 0.015 нФ
    220 22 пФ 0.022 нФ
    330 33 пФ 0.033 нФ
    470 47 пФ 0.047 нФ
    680 68 пФ 0.068 нФ
    101 100 пФ 0.1 нФ
    151 150 пФ 0.15 нФ
    221 220 пФ 0.22 нФ
    331 330 пФ 0.33 нФ
    471 470 пФ 0.47 нФ
    681 680 пФ 0.68 нФ
    102 1000 пФ 1 нФ
    152 1500 пФ 1.5 нФ
    222 2200 пФ 2.2 нФ
    332 3300 пФ 3.3 нФ
    472 4700 пФ 4.7 нФ
    682 6800 пФ 6.8 нФ
    103 10000 пФ 10 нФ 0.01 мкФ
    153  15000 пФ 15 нФ 0.015 мкФ
    223  22000 пФ 22 нФ 0.022 мкФ
    333  33000 пФ 33 нФ 0.033 мкФ
    473  47000 пФ 47 нФ 0.047 мкФ
    683  68000 пФ 68 нФ 0.068 мкФ
    104 100000 пФ 100 нФ 0.1 мкФ
    154 150000 пФ 150 нФ 0.15 мкФ
    224 220000 пФ 220 нФ 0.22 мкФ
    334 330000 пФ 330 нФ 0.33 мкФ
    474 470000 пФ 470 нФ 0.47 мкФ
    684 680000 пФ 680 нФ 0.68 мкФ
    105 1000000 пФ 1000 нФ 1 мкФ

    Маркировка конденсаторов четырьмя цифрами

    Все тоже самое что и выше только первые три цифры определяют мантиссу, а последняя — показатель степени по основанию 10, для получения емкости в пикофарадах.

    Пример обозначения:

    1622 = 162*102 пФ = 16200 пФ = 16.2 нФ

    Буквенно-цифровая маркировка

    При такой маркировке буква указывает на десятичную запятую и обозначение (мкФ, нФ, пФ), а цифры — на значение емкости:

    15п = 15 пФ , 22p = 22 пФ , 2н2 = 2.2 нФ , 4n7 = 4,7 нФ , μ33 = 0.33 мкФ

    Также для обозначения используют букву R, она используется для обозначения емкостей в мкФ. А если перед «R» стоит ноль, то это значит что емкость в пикофарадах.

    Пример буквенно-цифровой маркировки обозначения:

    0R5 = 0,5 пФ , R47 = 0,47 мкФ , 6R8 = 6,8 мкФ

    Пример буквенно-цифровой маркировки конденсаторов

    Кратные и дольные единицы

    Образуются с помощью стандартных приставок СИ.

    Кратные Дольные
    величина название обозначение величина название обозначение
    101 Ф декафарад даФ daF 10−1 Ф децифарад дФ dF
    102 Ф гектофарад гФ hF 10−2 Ф сантифарад сФ cF
    103 Ф килофарад кФ kF 10−3 Ф миллифарад мФ mF
    106 Ф мегафарад МФ MF 10−6 Ф микрофарад мкФ µF
    109 Ф гигафарад ГФ GF 10−9 Ф нанофарад нФ nF
    1012 Ф терафарад ТФ TF 10−12 Ф пикофарад пФ pF
    1015 Ф петафарад ПФ PF 10−15 Ф фемтофарад фФ fF
    1018 Ф эксафарад ЭФ EF 10−18 Ф аттофарад аФ aF
    1021 Ф зеттафарад ЗФ ZF 10−21 Ф зептофарад зФ zF
    1024 Ф иоттафарад ИФ YF 10−24 Ф иоктофарад иФ yF
    применять не применяются или редко применяются на практике
    • Дольную единицу пикофарад
      до 1967 года называли
      микромикрофарада
      (русское обозначение: мкмкф; международное: µµF).
    • На схемах электрических цепей и (часто) в маркировке ранних конденсаторов советского производства целое число (например, «47») означало ёмкость в пикофарадах, а десятичная дробь (например, «10,0» или «0,1») — в микрофарадах; никакие буквенные обозначения единиц измерения ёмкости на схемах не применялись… Позже и до сегодняшних дней: любое число без указания единицы измерения — ёмкость в пикофарадах; с буквой н
      — в нанофарадах; а с буквами
      мк
      — в микрофарадах. Использование других единиц ёмкости на схемах не стандартизовано (как и обозначение номинала на конденсаторах). На малогабаритных конденсаторах используют различного рода сокращения: например, после двух значащих цифр ёмкости в пикофарадах указывают число следующих за ними нулей (таким образом, конденсатор с обозначением «270» имеет номинальную ёмкость 27 пикофарад, а «271» — 270 пикофарад)[
      источник не указан 2610 дней
      ].
    • В текстах на языках, использующих латиницу, очень часто при обозначении микрофарад в тексте заменяют букву µ (мю) на латинскую u
      («uF» вместо «µF») из-за отсутствия в раскладке клавиатуры греческих букв.

    Понятие емкости, правила измерения

    Данная величина показывает, какое количество электронов (или других заряженных частиц) должно переместиться от одного объекта к другому для получения необходимого значения напряжения. Последнее возникает по той причине, что при перемещении частиц между объектами образуется разница потенциалов.

    Единицей измерения емкостного значения является фарад (на письме обозначается заглавной кириллической литерой Ф). Когда при перенесении заряда в 1 Кулон напряжение меняется на 1 Вольт, значение емкости между перенесенными объектами составляет 1 Фарад. Формула зависимости емкости от напряжения имеет такой вид:

    С (емкость) = Q (заряд)/U(напряжение).

    Если мастер собрался измерять емкость используемого в радиоэлектронной схеме конденсатора, ему потребуется такой прибор, как мультиметр. С задачей способен справиться даже бюджетный аппарат, при этом наибольшая точность демонстрируется при работе с пленочными конденсаторными элементами. Для максимально точных замеров можно воспользоваться измерителем иммитанса, но данный прибор отличается очень высокой ценой (около 120 тыс. руб.). При использовании мультиметра нужно придерживаться следующего алгоритма:

    1. Отсоединить электроцепь от источника нагрузки. Проверить отсутствие питания, установив на устройстве режим замера напряжения и поставив щупы к источнику: показатель должен быть равен нулю.
    2. Снять заряд с конденсатора пассивным способом (подождать 20-30 минут) или активным (с помощью резистора). Для маленьких элементов нужен прибор с сопротивлением более 2 кОм. С достаточно крупными конденсаторами (например, в фотоаппаратах и бытовой технике) лучше вообще не работать в домашних условиях без подготовки – они накапливают опасно высокий заряд. Для разрядки такого элемента требуется резистор на 20 кОм и 5 Вт, подсоединенный через изолированный провод диаметром 3,3 мм2, предназначенный для эксплуатации под напряжением до 600 В.
    3. Отключить конденсатор от цепи. После этого поставить мультиметр в режим замера емкости. Если прибор снабжен несколькими настроечными диапазонами, нужно поставить тот, что с наибольшей вероятностью окажется верным (сориентироваться можно по маркировке). При наличии клавиши Rel нужно нажать ее, чтобы емкость сошла со щуповых элементов.
    4. Щупы помещаются к выводам конденсатора. При тестировании поляризованных элементов надо обязательно соблюдать полярность. Теперь нужно дождаться вывода данных на дисплей. Если высветилось слово overload (или OL), показатель слишком высокий для обнаружения данным прибором или в данном диапазоне (во втором случае нужно выбрать другой диапазон).

    Важно! Нельзя подключать мультиметр к конденсаторному элементу, на корпусе которого имеются проколы или выпуклые места. Такие элементы вообще не стоит эксплуатировать – при подключении питания они способны взорваться.

    Процесс измерения емкости конденсатора мультиметром

    Конденсатор, устройство стандартной емкости

    Электронное устройство, специально предназначенное для изменения напряжения пропорционально накопленному заряду, называется конденсатором.

    Почти каждое тело естественно образует конденсатор друг с другом, но оно становится электронным устройством, когда оно имеет точно определенную емкость, что позволяет использовать его в радиоэлектронных схемах.

    Таким образом, один усилитель подает конденсатор с мощностью одного фарада на один вольт в секунду.

    Напряжение на конденсаторе в настоящее время невозможно изменить, поскольку в природе нет бесконечного потока. Если клеммы заряженного конденсатора закрыты, ток должен быть непрерывным.

    Фактически, конденсатор и его терминалы имеют некоторое внутреннее сопротивление, поэтому текущая мощность является окончательной, но она может быть очень большой. Аналогично, если разряженный конденсатор подключен к источнику напряжения.

    Поток будет склонен к бесконечности и будет ограничен внутренним сопротивлением конденсатора и источником напряжения.

    Многие ошибки в коммутационных и импульсных схемах связаны с тем, что разработчики забывают учитывать тот факт, что напряжение на конденсаторе не может быть немедленно изменено. Быстрорастворимый транзистор, который напрямую подключен к заряженному конденсатору, может легко гореть или сильно нагреваться.

    Цифро-буквенное обозначение

    Если вы разбираете старую советскую аппаратуру, то там все будет довольно просто, – на корпусах так и написано «22пФ», что значит 22 пикофарад, или «1000 мкФ», что значит 1000 микрофарад. Старые советские конденсаторы обычно были достаточного размера чтобы на них можно было писать такие «длинные тексты».

    Общемировая, если можно так сказать, цифро-буквенная маркировка предполагает использование букв латинского алфавита:

    • p – пикофарады,
    • n – нанофарады
    • m – микрофарады.

    маркировка конденсатора

    При этом полезно помнить, что если за единицу емкости условно принять пикофарад (хотя, это и не совсем правильно), то буквой «p» будут обозначаться единицы, буквой «n» – тысячи, буквой «m» – миллионы. При этом, букву будут использовать как децимальную точку. Вот наглядный пример, конденсатор емкостью 2200 пФ, по такой системе будет обозначен 2n2, что буквально значит «2,2 нанофарад». Или конденсатор емкостью 0,47 мкФ будет обозначен m47, то есть «0,47 микрофарад».

    Будет интересно➡  Формула расчёта сопротивления конденсатора

    Причем у конденсаторов отечественного производства встречается аналогичная маркировка в кириллице, то есть, пикофарады обозначают буквой «П», нанофарады – буквой «Н», микрофарады -буквой «М». А принцип тот же: 2Н2 – это 2,2 нанофарад, М47 – это 0,47 микрофарад. У некоторых типов миниатюрных конденсаторов «мкФ» обозначается буквой R, которая тоже используется как децимальная точка, например:

    1R5 =1,5 мкФ.

    Маркировка СМД (SMD) конденсаторов.

    Размеры СМД конденсаторов невелики, поэтому маркировка их производится весьма лаконично. Рабочее напряжение нередко кодируется буквой(2-й и 3-й варианты на рисунке ниже) в соответствии с данными предоставленными в предидущем разделе. Номинальная емкость может кодироваться либо с помощью трехзначного цифрового кода(вариант 2 на рисунке), либо с использованием двухзначного буквенно-цифровой кода(вариант 1 на рисунке). При использовании последнего, на корпусе можно обнаружить таки две(а не одну букву) с одной цифрой(вариант 3 на рисунке).

    Маркировка СМД(SMD) конденсаторов.

    Первая буква может является как кодом изготовителя(что не всегда интересно), так и указываеть на номинальное рабочее напряжение(более полезная информация), вторая — закодированным значением в пикоФарадах(мантиссой). Цифра — показатель степени(указывает сколько нулей необходимо добавить к мантиссе). Например EA3 может означать, что номинальное напряжение конденсатора 16в(E) а емкость — 1,0 *1000 = 1 нанофарада, BF5 соответсвенно, напряжение 6,3в(В), емкость — 1,6* 100000 = 0,1 микрофарад и.т.д.

    Буква Мантисса.
    A 1,0
    B 1,1
    C 1,2
    D 1,3
    E 1,5
    F 1,6
    G 1,8
    H 2,0
    J 2,2
    K 2,4
    L 2,7
    M 3,0
    N 3,3
    P 3,6
    Q 3,9
    R 4,3
    S 4,7
    T 5,1
    U 5,6
    V 6,2
    W 6,8
    X 7,5
    Y 8,2
    Z 9,1
    a 2,5
    b 3,5
    d 4,0
    e 4,5
    f 5,0
    m 6,0
    n 7,0
    t 8,0

    Цветовая кодировка керамических конденсаторов.

    На корпусе конденсатора, слева — направо, или сверху — вниз наносятся цветные полоски. Как правило, номинал емкости оказывается закодирован первыми тремя полосками. Каждому цвету, в первых двух полосках,соответствует своя цифра: черный — цифра 0; коричневый — 1; красный — 2; оранжевый — 3; желтый — 4; зеленый — 5; голубой — 6; фиолетовый — 7; серый — 8; белый — 9. Таким образом, если например, первая полоска коричневая а вторая желтая, то это соответствует числу -14. Но это число не будет величиной номинальной емкости конденсатора, его еще необходимо умножить на множитель, закодированный третьей полоской.

    В третьей полоске цвета имеют следующие значение: оранжевый — 1000; желтый — 10000; зеленый — 100000. Допустим, что цвет третьей полоски нашего конденсатора — желтый. Умножаем 14 на 10000, получаем емкость в пикофарадах -140000, иначе, 140 нанофарад или 0,14 микрофарад. Четвертая полоска обозначает допустимые отклонения от номинала емкости(точность), в процентах: белый — ± 10 %; черный — ± 20%. Пятая полоска — номинальное рабочее напряжение. Красный цвет — 250 Вольт, желтый — 400.

    Маркировка конденсаторов - цифровая, цветная её расшифровка

    Плоский конденсатор. Параметры

    Ёмкость плоского конденсатора
    Относительная диэлектрическая проницаемость
    Площадь одной из обкладок конденсатора
    Расстояние между обкладками
    Полученные характеристики плоского конденсатора

    Самая простая и самая распространенная конструкция конденсатора это два плоских проводника разделенных тонким слоем диэлектрика ( то есть материала не проводящего электрический ток).
    Ёмкость такого сооружения определяется следующей формулой.

    где ε0 = 8,85.10-12 Ф/м — абсолютная диэлектрическая проницаемость

    Если же конденсатор состоит не из пары пластин, а каого то n-ого количества плоских пластин то ёмкость такого «слоёного» конденсатора составит

    Еще интереснее выглядит формуа такого «слоёного» конденсатора, если в слоях находятся разные диэлектрики , разной толщины d

    S- площадь одной из обкладок конденсатора ( предполагаем что другая обкладка имеет такую же площадь)

    d- расстояние между обкладками

    С- ёмкость конденсатора

    Рассмотрим примеры

    Задача: Ёмкость плоского конденсатора 350 нанофарад, расстояние между обкладками 1 миллиметр, и заполнено воздухом. Определить какова площадь обкладок?

    Сообщаем боту что нам известно: C=350нФ, d=1мм. Так как у воздуха диэлектрическая проницаемость 1.00059 то e=1.00059. Поле площадь очистим, так именно его мы будем определять

    Получаем вот такой ответ

    Полученные характеристики плоского конденсатора
    d = 1 милиметр e = 1.00059 C = 350 нанофарад S = 39.524703024086 м2

    Ответ, площадь обкладок конденсатора при таких значениях должна составлять почти 40 квадратных метров.

    Цветовая кодировка электролитических конденсаторов.

    Что касается малогабаритных электролитических конденсаторов, то их номинальная емкость кодируется с помощью двух полосок и одного цветового пятна. Первая и вторая полоска определяет число, а пятно — множитель. Цветовая кодировка первых двух полосок у электролитических конденсаторов полностью соответствует маркировке конденсаторов керамических. Необходимо учитывать, лишь то, что величина емкости у «электролитов» получается в микрофарадах, а не пикофарадах как у керамических конденсаторов. Цвета пятна, означающего множитель: черный — 1; коричневый — 10; красный — 100; серый — 0,01; белый — 0,1; Например, цвет первой полоски голубой( цифра 6), второй — оранжевый( цифра 3), при коричневом цвете пятна( множитель — 10). Это означает 63*10= 630 микрофарада. Если у электролитического конденсатора присутствует третья полоска, то она определяет его номинальное напряжение: белый цвет — 3 вольта; желтый — 6,3 вольт; черный — 10 вольт; зеленый — 16 вольт; голубой — 20 вольт; серый — 25 вольт; розовый — 35 вольт.

    Маркировка конденсаторов - цифровая, цветная её расшифровка

    Плюсовой вывод в таких электролитических конденсаторах — более толстый, чем минусовой.

    Цветовая маркировка отечественных радиоэлементов

    При производстве линий с так называемыми автоматическими видами монтажа появилось и цветное нанесение, а также его непосредственное значение во всей системе.

    На сегодняшний день больше всего используют нанесение с помощью четырех цветов. В данном случае прибегли к применению четырех полос. Итак, первая полоска вместе со второй представляют собой значение емкости в так называемых пикофарадах. Третья полоса означает отклонение, которое можно позволить. А четвертая полоса в свою очередь означает напряжение номинального типа.

    Приводим для вас пример как обозначается тот или иной элемент — емкость – 23*106 пикофарад (24 F), допустимое отклонение от номинала – ±5%, номинальное напряжение – 57 В.

    Как расшифровать маркировку конденсатора и узнать его ёмкость?

    Маркировка конденсаторов импортного производства

    На сегодняшний день стандарты, которые были приняты от IEC, относятся не только к иностранным видам оборудования, а и к отечественным. Данная система предполагает нанесение на корпус продукции маркировки кодового типа, которая состоит из трех непосредственных цифр.

    Две цифры, которые расположены с самого начала, обозначают емкость предмета и в таких единицах, как пикофарадах. Цифра, которая расположена третьей по порядку – это число нулей. Рассмотрим это на примере 555 – это 5500000 пикофарад. В том случае, если емкость изделия является меньше, чем один пикофарад, то с самого начала обозначается цифра ноль.

    Как расшифровать маркировку конденсатора и узнать его ёмкость?

    Есть также и трехзначный вид кодировки. Такой тип нанесения применяется исключительно к деталям, которые являются высокоточными.

    Объем панели и генератора Van de Graaff

    Конденсаторы обычно представляют собой две пластины, накладывающие слой диэлектрических слоев.

    [Емкость между двумя панелями, Φ

    ] = [
    Диэлектрическая проницаемость вакуума, F / m
    ] * [
    Диэлектрическая диэлектрическая проницаемость между пластинами
    ] * [
    Поверхность панели, м²
    м] / [Расстояние между пластинами, м

    ]

    [Диэлектрическая проницаемость вакуума, F / m

    ] приблизительно равна 8,854E-12, [
    Расстояние между пластинами, м
    ] намного меньше линейных размеров пластин.

    Давайте подумаем о таком интересном случае.

    Предположим, у нас есть две панели с определенной разницей потенциалов. Мы начинаем физически проводить их в космосе. Мы используем энергию, потому что панели притягивают друг друга. Напряжение между пластинами будет увеличиваться, потому что заряд остается неизменным, а емкость уменьшается.

    Этот принцип основан на работе генератора Ван де Граафа. На конвейерной ленте имеются металлические пластины или зернистые материалы, которые могут нести наполнитель.

    Область применения

    В фарадах измеряют электрическую ёмкость проводников, то есть их способность накапливать электрический заряд. Например, в фарадах (и производных единицах) измеряют: ёмкость кабелей, конденсаторов, межэлектродные ёмкости различных приборов. Промышленные конденсаторы имеют номиналы, измеряемые в микро-

    ,
    нано-
    и
    пикофарадах
    и выпускаются ёмкостью до ста фарад; в звуковой аппаратуре используются гибридные конденсаторы ёмкостью до сорока фарад.

    Не следует путать электрическую ёмкость и электрохимическую ёмкость батареек и аккумуляторов, которая имеет другую природу и измеряется в других единицах: ампер-часах, соразмерных электрическому заряду (1 ампер-час равен 3600 кулонам).

    Маркировка конденсаторов, перевод величин и обозначения (пФ, нФ, мкФ)

    Что измеряется в фарадах

    Начиная свой путь в электрике, ученик или любитель радиоэлектроники вскоре сталкивается с такой единицей измерения, как фарад. Он должен знать, что измеряется в фарадах, какие существуют дольные и кратные единицы, какие из них чаще всего применяются в конденсаторных элементах. Помимо этого, требуется располагать соответствующей таблицей и знать, сколько микрофарад на 1 киловатт двигателя нужно употребить для приведения его в рабочее состояние.

    Образцы конденсаторных устройств разных типов

    Читайте также:  Безопасное расстояние от ЛЭП до жилого дома

    Кодовая маркировка конденсаторов 3 цифрами

    Конденсатор 10n это сколько

    К примеру конденсатор с обозначением 153 означает что его емкость составляет 15000 пФ.

    Код Пикофарады, пФ, pF Нанофарады, нФ, nF Микрофарады, мкФ, μF
    109 1.0 пФ 0.0010нф
    159 1.5 пФ 0.0015нф
    229 2.2 пФ 0.0022нф
    339 3.3 пФ 0.0033нф
    479 4.7 пФ 0.0048нф
    689 6.8 пФ 0.0068нФ
    100 10 пФ 0.01 нФ
    150 15 пФ 0.015 нФ
    220 22 пФ 0.022 нФ
    330 33 пФ 0.033 нФ
    470 47 пФ 0.047 нФ
    680 68 пФ 0.068 нФ
    101 100 пФ 0.1 нФ
    151 150 пФ 0.15 нФ
    221 220 пФ 0.22 нФ
    331 330 пФ 0.33 нФ
    471 470 пФ 0.47 нФ
    681 680 пФ 0.68 нФ
    102 1000 пФ 1 нФ
    152 1500 пФ 1.5 нФ
    222 2200 пФ 2.2 нФ
    332 3300 пФ 3.3 нФ
    472 4700 пФ 4.7 нФ
    682 6800 пФ 6.8 нФ
    103 10000 пФ 10 нФ 0.01 мкФ
    153 15000 пФ 15 нФ 0.015 мкФ
    223 22000 пФ 22 нФ 0.022 мкФ
    333 33000 пФ 33 нФ 0.033 мкФ
    473 47000 пФ 47 нФ 0.047 мкФ
    683 68000 пФ 68 нФ 0.068 мкФ
    104 100000 пФ 100 нФ 0.1 мкФ
    154 150000 пФ 150 нФ 0.15 мкФ
    224 220000 пФ 220 нФ 0.22 мкФ
    334 330000 пФ 330 нФ 0.33 мкФ
    474 470000 пФ 470 нФ 0.47 мкФ
    684 680000 пФ 680 нФ 0.68 мкФ
    105 1000000 пФ 1000 нФ 1 мкФ
    Back To Top