Как подсоединить светодиодную ленту: пошаговая инструкция по монтажу и подключению

Как подсоединить светодиодную ленту: пошаговая инструкция по монтажу и подключению

Особенности светодиодных лент

Со светодиодной подсветкой знакомы все: белые, неоновые, разноцветные контуры нередко освещают витрины, рекламные и праздничные конструкции, танцпол, подвесные потолки. Свет исходит от гибких лент, снаружи или внутри которых закреплены светодиоды с сопутствующими элементами.

Перед подключением лент нужно предварительно ознакомиться с их разнообразием, чтобы подобрать подходящую продукцию и не ошибиться при коммутации устройств между собой. А начать лучше с маркировки, которая у сертифицированных изделий всегда доступна: отпечатана на наклейках или прямо на отдельных элементах.

Светодиодные ленты с различными характеристиками
Светодиодные ленты с различными характеристиками
Ленты различают по длине, ширине, количеству светодиодов, интенсивности свечения. Равномерность освещения достигается качеством, одинаковым для всех изделий: светодиоды расположены с одинаковым шагом по всей длине

LED – это общее обозначение всех изделий со светодиодами.

Но они могут располагаться по-разному:

  • SMD – закреплены на поверхности;
  • DIP LED – находятся внутри прозрачной трубки или покрыты слоем силикона.

Модули изготавливают в различных стандартах, а размеры зашифровывают в доступном для понимания формате:

  • 2835 – 28*35 мм;
  • 5050 – 50*50 мм и т. д.

Есть такое понятие, как плотность модулей – количество светодиодов на 1 п/м. Обычно это 30, 60, 120 или 240 штук.

Маркировка свечения или цвета обозначается латиницей:

  • CW – белый холодный;
  • WW – белый теплый;
  • RGB – с изменяющимся цветом;
  • G – зеленый;
  • B – голубой;
  • R – красный.

Класс защиты указывается стандартным обозначением IPхх: IP20, IP65 и др.

Для удобства выбора лучше пользоваться сводными таблицами, которые нередко предлагает производитель.

Таблица характеристик светодиодных лент
Таблица характеристик светодиодных лент
В этой таблице можно найти параметры, полезные для расчетов, если вы захотите подобрать наиболее экономичный вариант. Также для сравнения представлены эквивалентные мощности ламп накаливания

На бухтах или пакетах с метровыми отрезками есть наклейки с указанием мощности, напряжения, параметров светового потока для 1 светодиода.

Длинную ленту можно порезать на куски ножницами, оставляя с обеих сторон монтажные площадки. Это сделать легко, так как по всей длине нанесены понятные условные обозначения.

Для соединения фрагментов используют или специальные коннекторы, или пайку. Первый вариант ускоряет процесс сращивания кусочков, но обходится дороже.

Необходимость применения выключателей

Даже если предполагается постоянное свечение светодиодной ленты, выключатель питания после источника напряжения необходим. В случае ремонта или профилактических работ (очистка от грязи и т.д.) удобно снять напряжение одним движением коммутационного элемента.

Автоматический выключатель и выключатель питания.
Автоматический выключатель и выключатель питания.
Автоматический выключатель и выключатель питания.

Важно! Если используется бестрансформаторное подключение светильника, надо использовать выключатель, отключающий одновременно оба проводника.

На стороне 220 В обязательно должен быть автоматический выключатель (независимо от схемы включения). Если блок питания или выпрямитель включаются в бытовую розетку, то она, скорее всего, защищена автоматом. Если используется неразъемное соединение, то надо обязательно предусмотреть установку автоматического выключателя. Он служит одновременно коммутирующим элементом и средством защиты во внештатной ситуации. И никогда не будет лишней установка УЗО, особенно при отсутствии гальванической развязки в виде трансформатора.

Видео: Установка бесконтактного выключателя скрытой установки для светодиодной ленты.

Как подключить к блоку питания компьютера

Компьютерный БП имеет в своем составе шину питания 12 В. Она отлично стабилизирована и подойдет для питания LED-модулей. Но ATX-блок питания, а именно они наиболее распространены в настоящее время, просто так после подключения в розетку не запустится, на главном разъеме (20 или 24 контакта) нужно замкнуть зеленый провод на массу (на черный). 12 В находятся на проводе желтого цвета, а минус – на черном. Обычно шина с этим напряжением выдерживает большие токи порядка 10 А.

Для подключения к нагрузке можете либо отрезать molex-разъем с БП, либо использовать molex тип «мама», а к его проводам подпаять ленту, так вы получите разборную конструкцию. Если необходимо подключить светильник большой мощности, рекомендуем объединить несколько желтых проводников вместе (скрутить и пропаять) чтобы снизить просадки напряжения.

Блок питания от компьютера не рекомендуется использовать без нагрузки.

к содержанию ↑

Как подключить светодиодную R G B ленту к контроллеру

RGB LED ленту можно подключить и без контроллера, непосредственно к блоку питания. При таком подключении теряется смысл ее использования, светить она будет либо белым или одним из цветов с малой яркостью.

В статьях сайта светодиодных лент»BGR«Подключение и лентой»BGR«Ремонт системы освещения светодиодной в деталях рассмотрены вопросы подключения, принципа работы и ремонта контроллера, но не освещен вопрос подключения RGB ленты к контроллеру с помощью разъемного соединения.

Контроллер LN-IR24B

В случае если к ленте уже припаяны провода с ответной частью разъема, установленного на контроллере, что бывает редко, то вопросов не возникает. Достаточно сочленить разъемы, с учетом ключа и подключение готово.

Контроллер LN-IR24B

Мне пришлось подключать RGB ленту к контроллеру LN-IR24B, в котором установлен разъем, как на фотографии. Шаг между контактами в разъеме составляет 2,5 мм, диаметр под штыри 0,7 мм при глубине 4 мм. Ответной части к разъему в наличии не было.

Задачу подключения можно решить тремя способами. Отрезать разъем и срастить провода методом скрутки со сдвигом, припаять провода непосредственно к печатной плате контроллера или подобрать подходящий разъем.

Разъем для подключения к контроллеру LN-IR24B

Лучшим решением является не нарушать конструкцию контроллера, так как будет потеряна гарантия, а подобрать разъем. В наличии был пятиконтактный разъем от платы видеомагнитофона, подходящий по геометрическим параметрам. После удаления лишнего контакта проверка показала, что штыри входили с небольшим натягом и надежно фиксировались в ответной части. Осталось только припаять к его штырям, соблюдая маркировку провода, идущие от LED ленты. Одетые кембрики придадут пайкам законченный вид и защитят провода от обрыва при изгибах.

Подготовка разъема для подключения к контроллеру LN-IR24B

Смонтированная RGB светодиодная система готова и можно ее устанавливать на новогоднюю елку, для чего она и предназначалась.

Схема монтажа с диммером

Диммерный адаптер представляет собой не просто сетевой электрический драйвер, преобразующий всё те же 220 вольт в необходимые для питания 12… 80, а дополнительный блок, в котором переключение питания на нескольких выходах происходит посредством микроконтроллера, управляющего малогабаритными релейными модулями или силовыми транзисторными ключами. Поскольку транзисторная коммутация значительно более долговечна, чем блок реле (между контактами реле возможно микроскопическое искрение, и они после нескольких миллионов срабатываний отгорают), в последние годы именно она вытесняет релейное управление.

Подключение диммера выполняется не напрямик к сети, а после блока питания. Исключение – «умные розетки», в которых управление, похожее на диммерное, производится при помощи циклически подключаемых и отключаемых розеток. Второй вариант – микроконтроллер диммера встроен в сам БП, но общий принцип здесь остаётся неизменным: коммутируется диммерным модулем именно выходное, а не входное напряжение. Питание микроконтроллер диммера получает от всё тех же, к примеру, штатных 12 вольт.


Диммерное освещение создано для одно-, двух-, трёх- и четырёхцветных светолент. Два последних варианта – светодиоды красных, синих и зелёных цветов свечения (лента RGB), а также в качестве четвёртого может быть добавлен белый (светосборка RGBW). В особых случаях для основной светоленты, излучающей видимый свет разных цветов, применяются ультрафиолетовые и/или инфракрасные светодиоды. УФ-светодиоды – прерогатива, к примеру, диско-клубов (посетители приходят в люминесцентной одежде, которая светится в ультрафиолете).

ИК используют на охраняемых объектах и режимных зонах, видеокамеры которых хорошо воспринимают этот свет. УФ может также мерцать (программа задаётся включением соответствующего режима диммера), медленно гаснуть и вспыхивать. Питание же для ИК часто делают включаемым по датчику движения видеокамеры – либо работающим непрерывно: ИК светодиоды коммутировать диммером, работающим по принудительно-заданному режиму, не имеет смысла.


Чтобы подключить диммер в электроцепь светоленты, сделайте следующее:

  • подсоедините сетевой кабель к блоку питания (вход 220 В), используя общий выключатель и/или автомат-предохранитель;
  • подсоедините выходной кабель (12 В) к входу диммерного блока;
  • подключите управляющие выходы диммера к соответствующим «цветным» шинам на входе светоленты.

Сборка готова, протестируйте её. Усложнённые, разветвлённые сети, где используется более одного БП, больше одного диммера, настраиваются независимо, в одном и том же или в отличных друг от друга режимах.


Дополнительно диммер может содержать в своём составе приёмник для ИК или радиопульта (как правило, Nano- или Bluetooth-переключение), а сам пульт управления поставляется в комплекте. Опытные пользователи- «самодельщики» вручную собирают пультовую систему управления диммером, плюс данного метода – свобода в выборе режима свечения, расписания работы светоленты, возможности управлять ею удалённо, по интернету, и т. д.

Область применения разнообразна: загородный или дачный дом, квартира, торговый зал. А при использовании влагозащищённых светолент, залитых силиконом (класс IP-69), – бассейн или предбанник в бане или сауне, наружное освещение радиомачты или телебашни, подсветка рекламных щитов или вывесок.

Диммерное освещение – наглядный и весьма действенный способ дать рекламу своему заведению, торговой точке.

Различные способы коммутации

После определения источника питания выполняется подключение ленты на светодиодах. Разберём два наиболее распространённых приёма.

Первый – одна лента и блок

В примере будет использована лента классической длины в бобине – 5 метров. В большинстве случаев, на конце ленты, с внешней стороны, имеются небольшие отрезки проводки для осуществления коммутации. При их отсутствии необходимо произвести спаивание.

С этой целью, берутся провода с несколькими жилами, сечением не превышающим 2 миллиметра – и отрезаются куски достаточной длины для закрепления ленты и монтажа питающего оборудования. Для удобства подключения проводку желательно взять в разноцветной изоляции. Например, для «плюса» красного цвета, а для «минуса» синего.

При помощи канифоли или специальной кислоты и припоя производится лужение проводки с обоих концов. После этого кабель можно припаивать к контактным площадкам ленты. Данную операцию требуется выполнить максимально быстро, во избежание повреждения светодиодов высокой температурой от паяльника.

На отрезки, проводки, которые будут соединяться с питающим блоком, рекомендуется установить специальные наконечники «НШВИ». Это позволит обеспечить наиболее надёжную коммутацию с клеммами источника питания.

Блок питания 12V
Блок питания 12VИсточник tildacdn.com
Читайте также:
Фотореле для уличного освещения – устройство и процесс монтажа

Однако для установки этих приспособлений потребуется специальный обжимающий инструмент, который используется профессиональными электромонтажниками. Правда можно обойтись и простыми плоскогубцами. Места, в которых производилась пайка, тщательно изолируются. Наиболее оптимальным вариантом изоляции является использование термоусадочной трубки.

Блоки питания для светодиодных лент 12 вольт: 4 типа конструкции для разных условий эксплуатации

Поскольку световое оборудование на светодиодах выпускается на 12 и 24 вольта, то под каждое из них создаются специальные блоки питания. Особых различий при выборе для покупки и эксплуатации у них нет.

Поэтому я буду о них рассказывать на примере двенадцативольтовых устройств.

Блок питания работает по принципу инверторного преобразования электрической мощности за счет использования:

  • сетевого фильтра, блокирующего поступление в схему электрических помех;
  • диодного выпрямителя со сглаживающим фильтрам, создающих совместной работой стабилизированное напряжение строго постоянной величины;
  • высокочастотного генератора инвертора, вырабатывающего импульсы прямоугольной формы с действующим напряжением 220 вольт;
  • силового трансформатора, понижающего напряжение до оптимальной величины 12 или 24 вольта;
  • выходного выпрямителя с фильтром, окончательно подготавливающих выходной сигнал.

Структурная схема импульсного блока питания

Блоки питания для светодиодной ленты, которые выпускает промышленность, можно условно разделить на 4 класса по условиям их эксплуатации для работы:

  1. в сухих и чистых помещениях с обычными габаритами;
  2. либо в ограниченном пространстве;
  3. во влажной среде или на открытом воздухе;
  4. с мощными осветительными приборами.

Типовой блок питания специально не ограничивается своими размерами. Он имеет широкий клеммник с защитной планкой из диэлектрического пластика и металлическую перфорированную крышку. Через ее отверстия обеспечивается воздухообмен и отвод тепла от нагревающейся электроники.

Блок питания для светодиодной ленты

Малогабаритный блок питания ограничен своими размерами. Он тоже
имеет вентиляционные вырезы, но меньшее количество клемм. Внешний вид и
габариты однотипных модулей можете визуально сравнить на этой фотографии.

Блоки питания для светодиодной ленты

Герметичный импульсный блок питания создается для работы во влажной
среде. Его электронную начинку надежно защищает специальное покрытие корпуса с
классом IP67.

Герметичный блок питания для светодиодной ленты

Он способен надежно работать на улице, в ванной, бане, бассейне и других подобных помещениях. Однако не вздумайте его погружать в воду, например, в аквариум. Из такой затеи ничего хорошего не получится.

Самые мощные блоки питания снабжаются системой принудительной вентиляции. У них внутри корпуса встроен кулер, как у компьютерного блока. Его применение вызвано необходимостью эффективного отвода тепла от нагревающейся электроники.

Мощный блок питания

Вентилятор создает небольшие проблемы для владельцев: шум, который может раздражать отдельных людей. Это следует учесть заранее: продумать место для размещения мощного блока и способы снижения раздражающих звуков на этапе планирования электромонтажных работ в квартире.

Отказываться же от принудительного обдува нельзя: сразу начнутся проблемы со вздутыми конденсаторами, пробитыми диодами и вышедшими из строя силовыми транзисторами.

Вздутый конденсатор

По этой же причине вам стоит позаботиться о хорошей циркуляции воздуха через внутреннюю схему корпуса. Он должен свободно поступать к электрической схеме и выходить наружу, убирая излишнее тепло с электронных компонентов.

Блок питания для светодиодной ленты своими руками: полезные рекомендации

Принцип работы и схема импульсного блока питания не так уж сложна, как может показаться с первого взгляда. В нем происходит инверторное преобразование электрической мощности.

Схема импульсного блока питания

Основная трудность, с которой придется столкнуться самодельщикам — это сборка и настройка высокочастотного генератора. Схем для работы этого каскада много.

Наиболее перспективным направлением является пушпульная схема.

Пушпульная схема

Ее обзор, а также других аналогичных устройств я уже сделал в отдельной статье, посвященной ремонту ИБП. Тем, кого интересует кропотливая работа по сборке подобных модулей, рекомендую почитать информацию там.

Процесс самостоятельной сборки импульсного блока довольно сложный. Сейчас намного проще использовать для подключения к светодиодной ленте готовые конструкции, которые остались от отработавшей свой ресурс электронной техники.

Один из таких вариантов — компьютерный блок питания. Он построен по тем же принципам, поэтому отлично справится со светодиодными нагрузками.

Его надо просто подключить к сети 200 вольт, а выход потенциалов +12VDC и —12VDC взять с соответствующих гнезд выходного штеккера на 20 или 24 pin.

Разъемы компьютерного блока питания

Не забывайте, что ИБП не любят режим холостого хода. Для их проверок рекомендуется собирать резистивную схему нагрузки.

Блок нагрузки

Без ее подключения дорогостоящие электронные компоненты могут преждевременно выйти из строя.

Блок питания ноутбука тоже хорошо подходит для подключения к светодиодной схеме. Обращайте внимание на его выходную мощность. Она указывается на этикетке корпуса.

Блок питания ноутбука

В отдельных случаях подсветку можно запитать от батареек или аккумуляторов. Такие технические решения уже имеются в продаже для использования во внутренних пространствах шкафов, полочек, стеллажей.

Любой самодельный или заводской импульсный блок питания до подключения к схеме и нагрузке должен быть проанализирован и подобран по своим техническим характеристикам. Его надежная работа требует создания запаса мощности.

Расчет освещенности

Выясняя, как подключить светодиодную ленту, необходимо для начала рассчитать требуемую мощность изделия и его метраж для создания достаточной освещенности выбранной зоны.

Для популярных диодов есть данные по светимости одного элемента и/или всех элементов, установленных на одном метре ленты.

Светимость элементов светодиодной ленты
Светимость элементов светодиодной ленты

Если известно, что метр ленты с диодами 3525 в количестве 60 штук дает свечение 300 люмен, 1 такой диод обеспечивает световой поток в 5 люмен. Один метр ленты дает свечение, примерно равное потоку излучения от лампы накаливания 10В (15 люмен на 1 Ватт).

Важно: влагозащищенные ленты за счет изоляции дают поток светимости на 10…30% меньше, чем аналогичные модели без защиты.

Соответственно, для комнаты средних размеров (5х3 м), в которой для получения мягкого освещения достаточно ламп на 200В, потребуется примерно 200х15=3000 люмен, то есть 10 м диодной ленты. Планируя смонтировать диодную ленту по всему периметру помещения, мы должны использовать 15 м ленты. Следует учитывать потери светимости за счет отражения от потолка, которые составляют до 50% в зависимости от способа отделки. Таким образом, выбранной светодиодной ленты достаточно для подсветки комнаты, но не для полноценного «рабочего» освещения. Чтобы проще было пересчитать требуемое количество ленты по аналогии с привычными лампами накаливания и представлять затраты электроэнергии на освещение, стоит воспользоваться таблицами.

Характеристики светодиодных лент на 12в
Характеристики светодиодных лент на 12в

Так, для полноценного освещения в комнате (примерно 250 Вт лампы накаливания) размерами 5х3 м потребуется:

  • общий световой поток 250х15=3 750 лм;
  • на каждый метр ленты, проложенной по периметру комнаты приходится 3 750/15 = 250 лм;
  • с учетом потерь на отражение от потолка 40% на каждый метр ленты требуется светимость примерно 426 лм;
  • под такие требования примерно подходят светодиоды SMD3014-60, SMD3528-120 и SMD5050-30, причем первые два дают избыточную освещенность, третий – недостаточную.

Таким образом, необходимо определиться по световому потоку метра диодной ленты с учетом имеющихся в продаже моделей. Запас светимости в сторону увеличения составляет 5…10%.

Расчет для подключения светодиодной ленты RGB и монохромной не различаются.

Планируйте точки подключения лент заранее

Ленты длиной более 5 метров подключаются к питанию с обоих концов (если это не слабые ленты 5 ватт на метр, с ними таких проблем нет), иначе на самой ленте напряжение может просесть, и на конечных диодах оно будет меньше. И к 5-метровому куску ленты нельзя подключать следующий кусок ленты, по этой же причине, следующий кусок надо запитывать от отдельного кабеля. А если у нас 15 метров ленты, то подключать питание нужно уже в трёх точках: с краёв и посередине.

Подключение мощных светодиодных лент
Схемы подключения лент из инструкции к лентам Arlight

У нас есть два варианта подключения мощной ленты, которую надо запитать в нескольких точках. Первый вариант — тянем несколько кабелей от щита, а в щите уже осуществляем коммутацию этих кабелей. Второй вариант — тянем от щита один кабель нужного сечения до распределительной коробки где-то у начала ленты, а в коробке от этого кабеля разводим несколько кабелей до точек подключения ленты. Я лично не люблю скрытые монтажные коробки, поэтому предпочитаю первый вариант. Но кому-то будет удобнее второй, с коробками. И третий промежуточный вариант — без коробок, но с перемычками.

Приведём пример. Пусть у нас в комнате по периметру 20 погонных метров ленты мощностью 19.6 ватта на метр, 24 вольта. Итого 196 ватт, 8.17 ампера. Подключать к ленте питание надо в 4-х точках, каждые 5 метров. Если мы хотим разместить блок питания ленты в щите, прикинем среднюю длину кабеля от блока питания до точки подключения. Пусть это 15 метров.

Дальше считаем падение напряжения исходя из длины кабеля, сечения кабеля, тока, удельного сопротивления кабеля. Если кабель будет сечением 1.5мм2, то падение напряжения составит 11.6% — многовато, будет заметно. Подбираем сечение кабеля и количество кабелей. Если вести от щита 4 кабеля сечением 0.75мм2 (то есть, общее сечение 3мм2), то падение напряжения будет 5.8%, это уже лучше. Можно получить такую же цифру падения напряжения, если протянуть два кабеля 1.5мм2, от каждого кабеля запитать два угла прямоугольника ленты. Можно пойти по второму варианту — протянуть один кабель сечением 4мм2 до распределительной коробки, от неё максимально короткие перемычки до точек питания ленты сечением 1.5 или даже 0.75. До распределительной коробки падение напряжения при длине кабеля 15 метров составит 4.3%, если перемычки будут короткими и надёжно припаянными к ленте, проблем не будет при их сечении 0.75мм2.

Чем тоньше кабель подходит к самой ленте, тем удобнее подключать. Например, 0.75мм2 подключать удобно, а 1.5мм2 уже не очень.

То есть, в нашем примере можно сделать тремя способами:

  • Протянуть до ленты 4 кабеля 0.75мм2 (без промежуточных коробок, самое удобное подключение). Плюс — отсутствие коробки. Минус — 4 кабеля тянуть и заводить в щит.
  • Протянуть один кабель 4мм2 до распределительной коробки, от коробки 4 кабеля 0.75мм2 до углов ленты. Плюс — меньше падение напряжения. Минус — наличие коробки.
  • Протянуть два кабеля 1.5мм2 и запитать ленту с перемычками. Плюс — всего два кабеля небольшого сечения. Минус — неудобно делать перемычку, ведь надо в одной точке соединить подходящий от щита кабель, ленту и перемычку.

В каждом варианте надо считать падение напряжения, чтобы до ленты оно было не больше 8%, а лучше не больше 6%.

Нужен ли блок питания и контроллер?

Напряжение в бытовой сети обычно составляет 220 В. Для светодиодной ленты оно не годится, поэтому для преобразования энергии используют блоки питания. В продаже можно найти устройства 12 В или 24 В – выбор зависит от типа ленты.

Блок питания для светодиодной подсветки
Блок питания для светодиодной подсветки
Все необходимые технические характеристики блока питания указаны на этикетке. Перед подключением также обратите внимание на клеммы для соединения ленты и силового кабеля

Кроме напряжения важно знать суммарную мощность лент, которую придется рассчитать самостоятельно. Для этого мощность 1 п/м умножают на общее количество метров, которые планируется подключить к БП, а затем еще прибавляют 30%.

Предположим, у нас есть две 4-метровые ленты с мощностью 4,8 Вт, но мы их хотим подключить к одному блоку питания. 2 х (4 х 4,8) + 30% = 49,92 – следовательно, лучше взять БП на 60 Вт.

Диммер – это тип контроллера, с помощью которого можно регулировать настройки контура подсветки: яркость, выбор цвета и другие. Дешевые устройства обычно работают по одной программе, например, медленно меняют 2-3 цвета. Если требуется разнообразие, придется купить прибор подороже.

Особенности и принцип работы диммера мы детально рассмотрели в другой нашей статье.

Синяя подсветка в холле
Синяя подсветка в холле
С помощью мерцающей или неоновой подсветки можно создавать необычное космическое или радужное освещение. Для него схема с диммером обязательна

Для комфорта использования контроллеры комплектуются пультами д/у. При выборе диммера для LED-ленты также нужно учитывать мощность, и лучше покупать контроллер с резервом.

Инструкции по подключению своими руками

Комплектующие для сборки продаются отдельно, но благодаря отработанным схемам можно самостоятельно смонтировать и подключить декоративную ленточную подсветку.

Рассмотрим несколько несложных и доступных вариантов сборки, благодаря которым вы создадите полноценный осветительный прибор и разнообразите интерьер.

Вариант #1 — схема с блоком питания

Все элементы лучше всего купить в специализированном магазине или заказать на одной из проверенных интернет-площадок, предварительно удостоверившись, что продукция безопасна и сертифицирована.

Для сборки потребуется:

  • 5 м LED-ленты на 12 В с проводами для соединения, на 1 п/м – 60 светодиодов;
  • провод 2*0,5 для соединения LED-ленты и БП, длина зависит от места монтажа компонентов;
  • провод 3*1,5 для включения блока питания в сеть нужной длины (50-150 см);
  • разборная вилка для провода, рассчитанная на 10 А;
  • выключатель 6 А – аналог изделия для ночных светильников или бра;
  • блок питания на 60 В.

Для выполнения операций пригодятся строительный нож, крестовая отвертка, изолента или термоусадка. Если монтажные площадки не оснащены проводниками для соединения фрагментов, то понадобится паяльник.

Катушка светодиодной ленты
Катушка светодиодной ленты
Не хотите тратить время на пайку? Покупайте ленту не отдельными метровыми отрезками, а в катушке. Намотка бывает различной, но максимальная рекомендуемая длина – 5 метров

Чтобы не пускать деньги на ветер, предварительно определите длину светодиодной ленты и покупайте катушку с требуемой намоткой. Для подсветки потолка может потребоваться значительная длина – 15-20 м, а для зеркала гораздо меньше – 2-4 м.

Шаг 1 – собираем кабель питания

Берем вилку, разбираем ее корпус, открутив фиксирующий винт, и достаем штырьки. Затем проводники шнура 3*1,5 зачищаем на концах и вставляем в клеммы, которые могут находится или на штырьках, или внутри корпуса. Помещаем штырьки обратно в корпус, но уже вместе с присоединенными проводами, собираем его и закручиваем крепежный винт.

Вилка для шнура питания
Вилка для шнура питания
На любых электромеханических устройствах рекомендуем не экономить – разница в цене небольшая, а качество может заметно отличаться из-за использования производителями более надежных и безопасных материалов

Шаг 2 – подключаем кабель питания к БП

Потребуются клеммы L, N, РЕ на задней стенке корпуса блока. Концы провода, свободного от вилки, зачищаем и скручиваем. Снимаем крышку с корпуса, находим нужные клеммы, выкручиваем фиксирующие винты.

Оголенные провода скручиваем в небольшие кольца, надеваем на винты, которые затем ввинчиваем на посадочные места. Не забываем, что проводник с желто-зеленой маркировкой всегда коммутируется с клеммой РЕ.

Кольцевой наконечник на проводе
Кольцевой наконечник на проводе
Чтобы избежать такого ненадежного способа соединения, как скрутка, используйте заводские клеммные наконечники. Их несложно надеть на оголенные концы проводов, закрепить прессованием и изолировать

Шаг 3 – подключаем LED-ленту к БП

Берем провод 2*0,5 и зачищаем концы жил с обеих сторон. Одним концом присоединяем его к блоку питания, вторым – к светодиодной ленте.

Здесь необходимо соблюдать полярность – это несложно если учитывать цветовую маркировку: предположим, красный проводник соединяем с контактом V+, а черный – с V-. К БП подключение происходит уже по известному принципу: делаем колечки, надеваем на винты, которые закручиваем в соответствующие гнезда.

Если светодиодная лента оснащена монтажными проводами, пайка не потребуется. Надеваем на концы термоусадку, скручиваем жилы («+» ленты – с красным проводником, «–» – с черным), распределяем термоусадочную трубку по месту соединения, нагреваем. Можно использовать изоленту. Если вы предпочитаете скрутке пайку, она также подойдет.

Двойная изоляция проводов
Двойная изоляция проводов
Безопасный и эффективный способ изоляции – когда каждый провод помещается в термоусадку, а затем оба или несколько проводов покрываются еще одним защитным слоем

Шаг 4 – тестируем подсветку

Вставляем вилку в розетку и смотрим, засветились ли светодиоды. Если лента все еще смотана на катушке, во включенном состоянии стараемся ее не держать – протестировали и выключили.

Следующая операция потребуется, если вы не хотите каждый раз пользоваться вилкой, а привыкли к более удобному способу – использованию кнопочного выключателя.

Шаг 5 – интегрируем выключатель в шнур питания

Выключатели отличаются по форме и размеру, но похожи по принципу подключения. В продаже легче всего найти белые, реже черные изделия. Лучше подобрать устройство того же цвета, что и шнур.

Снимаем нагрузку, то есть достаем вилку из розетки. Разбираем выключатель – откручиваем фиксирующие винты.

На проводе питания отмечаем место монтажа, которое считаем наиболее удобным для дальнейшей эксплуатации. Наносим метки для удаления изоляции, ориентируясь на длину выключателя.

Шнур питания с выключателем
Шнур питания с выключателем
При отрезании изоляции учитываем, что после обратной сборки она должна «заходить» под корпус устройства, поэтому оголенный участок провода делаем на 1,5-2 см короче, чем длина выключателя

Делаем ножом надрезы на внешней изоляции, внутреннюю при этом задевать нельзя. Аккуратно снимаем верхний пластик, находим нулевую жилу, разрезаем посередине и зачищаем концы. Фазу не трогаем. Защищенные концы провода скручиваем, вставляем в клеммы.

Второй провод, неразрезанный, располагаем параллельно, но с другой стороны. Закрываем и фиксируем крышку. Проверяем, скрывается ли внешняя изоляция в корпусе выключателя – это необходимое условие безопасности.

Шаг 6 – повторно тестируем подсветку

Включаем вилку в сеть, проверяем работу выключателя.

Блок питания в металлическом корпусе также необходимо изолировать, чтобы не допустить случайного прикосновения и удара током. Для защиты можно использовать пластиковый бокс или другой кожух, не пропускающий электричество.

Блок питания в пластиковом корпусе
Блок питания в пластиковом корпусе
В продаже есть неизолированные БП, изначально в заводских условиях помещенные в полимерный корпус. Для коммутирования с другими устройствами они оснащены проводами или клеммами

Возможно, что после всех перечисленных процедур лента не загорится. Если исключить брак изделий, остается нарушение в схеме сборки. Наиболее частая ошибка – путаница в полярности подключения. Ее можно исправить, переподключив проводники.

Вариант #2 — монтажная инструкция с диммером

Возможности LED-подсветки можно значительно расширить, если использовать диммер – устройство, с помощью которого можно отрегулировать яркость освещения, задать мерцание, установить программу смены цвета. Он часто продается в паре с пультом д/у.

Схема монтажа диммера в подсветку
Схема монтажа диммера в подсветку
Диммеры могут иметь различную конструкцию, но от этого их место в общей схеме не меняется. Устройство всегда устанавливают на участке между БП (через вход INPUT) и светодиодными лентами (выход OUTPUT)

Освещение с регулировкой обычно используют для подсветки серьезных конструкций – например, встроенных шкафов-витрин или подвесных потолков. Рассмотрим вариант с гипсокартонной подвесной двухъярусной конструкцией, когда подсветка может работать одновременно или отдельно от основного освещения.

Для работ потребуется комплект, включающий:

  • 4 катушки с LED-лентами;
  • диммер с 4-мя выходами и пультом д/у;
  • блок питания;
  • кабель ВВГнг;
  • монтажные провода ПуГВ.

Учитывая, что светодиодная подсветка – один из контуров освещения комнаты, также понадобится распределительная коробка и гофрированная труба для изоляции кабеля в подвесной конструкции.

Шаг 1 – подводим силовой кабель

Это подготовительный этап, на котором необходимо перекинуть провод от щита к распределительной коробке в помещении, а оттуда – к блоку питания. Он может занять много времени и сил, а выполняют его параллельно работе по возведению подвесной конструкции.

Все работы проводятся так же, как при установке обычного выключателя: кабель располагаем в штробе, затем заводим в монтажную коробку, прямо под которой устанавливаем подрозетник для выключателя основного освещения.

Шаг 2 – прокладываем кабель от распредкоробки к БП

Кабель будет находиться внутри подвесного потолка. Нужно помнить, что на светодиодном контуре питание подключено постоянно, так как выключатель отсутствует, а все управление будет происходить через диммер с пультом д/у.

Гофрированная труба для изоляции проводов
Гофрированная труба для изоляции проводов
В подпотолочном пространстве обычно применяют открытую проводку. В этом случае необходима дополнительная изоляция, с функцией которой отлично справляется гофрированная труба

Блок питания и диммер должны быть скрытыми от глаз, но доступными для обслуживания или ремонта. Для этой цели подходит небольшая полочка, расположенная на профиле там же, где будет проходить светодиодная лента. Желательно, чтобы она располагалась на минимальном расстоянии от распределительной коробки.

Шаг 3 – соединяем БП и диммер

С помощью проводов ПуГВ 1 мм² выполняем соединение БП и диммера. Потребуется пара проводников с различной по цвету изоляцией: условно красный будет соединять контакты со знаком «+», черный – «-».

Наконечники для кабеля ПуГВ
Наконечники для кабеля ПуГВ
ПуГВ – это многожильный провод, поэтому для удобства монтажа и максимальной безопасности рекомендуем применять клеммные наконечники подходящей формы

Мы выбрали диммер с 4-мя выходами, следовательно, у него есть 1 гнездо V+ (для красного провода) и 4 гнезда V- (для черных проводов).

Подключаем провода к обоим устройствам, зажимая наконечники в клеммах и соблюдая полярность.

Шаг 4 – прокладываем провода от диммера к ленте

Лучше определить 2 места подключения LED-лент и расположить их в противоположных углах подвесной конструкции – по диагонали. Из каждой их 2-х точек будут выходить по 2 параллельно подключенных ленты (всего 4 штуки).

Количество красных и черных проводов отличается: к каждому их 2-х узлов подтягиваем по 1 красному и 2 черных провода от диммера. Следовательно, к диммеру подходят 2 красных и 4 черных провода.

Что делаем? Оба красных соединяем одним наконечником и зажимаем в клемме V+, а черные по одному вставляем и фиксируем в клеммах V-, которых как раз тоже 4.

На этом же этапе обычно заканчивают монтировать подвесную конструкцию, поэтому остается только зафиксировать и подключить светодиодные контуры.

Шаг 5 – подключение LED-лент

По схеме, ленты будут отходить парами из двух противоположных углов, таким образом, получится замкнутый прямоугольник подсветки.

Монтажный профиль для светодиодной ленты
Монтажный профиль для светодиодной ленты
Для монтажа ленты необходимо приобрести специальный профиль из алюминия. Он выполняет монтажную функцию и отвечает за отвод тепла во время включения подсветки

Отрезаем куски лент нужной длины по разметке так, чтобы с обеих сторон оставались площадки для соединения. На них указана полярность проводов. Соединяем провода, идущие от диммера, к ленте с помощью пайки или специальных коннекторов.

Сначала производим коммутацию в одном узле, затем – во втором. После соединения подсветку устанавливаем в профиль. Чтобы ее прикрыть, к подвесной конструкции приклеиваем декоративный багет.

Подключение одной ленты к блоку питания и диммеру

Диммер включается в цепь между блоком питания и лентой. Строго соблюдается полярность при соединении проводников от диммера к ленте. Подключение монохромной ленты через диммер

Распространенные ошибки

Довольно часто начинающие мастера соединяют 2 ЛЕД-панели и более последовательно (напрямую 2 конца). Однако это неправильно! Проводники между отрезками имеют тонкое сечение, так как рассчитаны на 1 кусок ленты. При последовательном соединении происходит значительное повышение сопротивления, из-за этого осветительный прибор излучает более тусклый свет. Кроме того, через первый отрез будет проходить более высокий ток, что приведет к перегреву ленты и сокращению срока ее работы.

Чтобы продлить срок эксплуатации прибора, нужно подключать их по правильно схеме.

Использование бестрансформаторной схемы

Желание сэкономить на покупке качественного источника питания для светодиодной ленты подталкивает некоторых радиолюбителей к использованию бестрансформаторного блока питания (БТБП). Простая схемотехника, недорогие компоненты и возможность быстрого изготовления своими руками – вот основные преимущества БТБП. Действительно их можно встретить фактически во всей электронной китайской продукции, работающей от сети 220 В (настенные часы, люстры с ПДУ, реле напряжения и т.д.) Но на самом деле схемы питания, в которых нет трансформатора, имеют два существенных недостатка:

  1. Отсутствие гальванической развязки, в результате чего потенциал высокого напряжения присутствует на всех участках электрической цепи. Другими словами, прикосновение к оголённым проводникам опасно для жизни и может вызвать сильный удар током.
  2. Низкая надёжность. Со временем конденсатор теряет ёмкость, напряжение на выходе снижается, и устройство перестаёт работать. Если же случится пробой конденсатора, то подключенная светодиодная лента полностью перегорит.

простейшая схема
Простейший классический вариант бестрансформаторного блока питания показан на рисунке выше. Его главный элемент – гасящий конденсатор (С1), который снижает сетевое напряжение до нужного значения. Затем оно проходит через выпрямитель – диодный мост (VD1), стабилитрон (VD2) и сглаживающий фильтр (С2). Расчёт ёмкости гасящего конденсатора производят, исходя из заданного напряжения и тока в нагрузке. Ввиду перечисленных выше недостатков подключать светодиодную ленту через такой блок питания не рекомендуется.

Активное применение БТБП в китайской электронике обусловлено исключительно экономией средств.

Back To Top