Формула полного расчета закона Ома для цепей постоянного и переменного токов
Закон Ома для участка цепи
По классической формулировке зависимость электрических параметров описывают следующим образом: ток на участке цепи (I) прямо пропорционален разнице потенциалов между контрольными точками (напряжению, U) и обратно – сопротивлению (R). Записать приведенное определение можно с применением типовых обозначений:
I = U/ R.
«Магический» треугольник поможет запомнить основные формулы
К сведению. Для расчета берут значения величин в стандартных единицах измерения: напряжение – вольты (В), электрическое сопротивление – омы (Ом), сила тока – амперы (А).
Эти выражения действительны для любого токопроводящего участка схемы. Пример с резистором, через который пропускается постоянный ток, можно использовать для демонстрации элементарного алгоритма вычислений:
- исходные данные: R = 25 Ом, U = 8 B;
- для расчета тока используют приведенную формулу: I = U/ R = 8/ 25 = 0,32 А;
- если известен ток (I = 1,5 А) и сопротивление (R = 15 Ом), без вольтметра можно узнать напряжение на выводах резистора: U = I *R = 1,5 * 15 = 22,5 В.
Рассмотренные сведения применяют для коррекции электрических параметров. Так, если нужно увеличить напряжение, выбирают сопротивление с большим номиналом. Одновременно обеспечивают стабилизацию тока. Если построить диаграмму с измеренными значениями тока и напряжения по вертикальной и горизонтальной оси, график получится в виде прямой линии. Эта форма подтверждает отсутствие активных составляющих процесса.
Вольтамперная характеристика
В приведенном на рисунке примере R1>R2. Для прохождения сильного тока приходится увеличивать напряжение либо уменьшать сопротивление контрольного участка.
Закон Ома для однородного и неоднородного участка цепи
Закон Ома для однородного участка электроцепи представляет собой классическое выражение зависимости силы от напряжения и сопротивления:
В этом случае основной характеристикой проводника является сопротивление. От внешнего вида проводника зависит, как выглядит его кристаллическая решетка и какое количество атомов примесей содержит. От проводника зависит поведение электронов, которые могут ускоряться или замедляться.
Поэтому (R) зависит от вида проводника, точнее, от его сечения, длины и материала и определяется по формуле:
где (p) — удельное сопротивление, ( l) — это длина проводника, а (S) — площадь его сечения.
Под неоднородным участком цепи постоянного тока подразумевается такой промежуток цепи, на который помимо электрических зарядов воздействуют другие силы.
Как можно было убедиться, закон, открытый Георгом Омом, прост только на первый взгляд. Разобраться во всех тонкостях самостоятельно под силу далеко не каждому. Если столкнулись с трудностями в учебе и сложными для понимания темами, обращайтесь за помощью к образовательному ресурсу Феникс.Хелп. Квалифицированные эксперты помогут сдать в срок самую сложную работу.
Читайте также: Нашатырный спирт проводит электрический ток или нет
Источник
Резистор
Все реальные проводники имеют сопротивление, но его стараются сделать незначительным. В задачах вообще используют словосочетание «идеальный проводник», а значит лишают его сопротивления.
Из-за того, что проводник у нас «кругом-бегом-такой-идеальный», чаще всего за сопротивление в цепи отвечает резистор. Это устройство, которое нагружает цепь сопротивлением.
Вот так резистор изображается на схемах:
В школьном курсе физики используют Европейское обозначение, поэтому запоминаем только его. Американское обозначение можно встретить, например, в программе Micro-Cap, в которой инженеры моделируют схемы.
Вот так резистор выглядит в естественной среде обитания:
Полосочки на нем показывают его сопротивление.
На сайте компании Ekits, которая занимается продажей электронных модулей, можно выбрать цвет резистора и узнать значение его сопротивления:
Источник: сайт компании Ekits
О том, зачем дополнительно нагружать сопротивлением цепь, мы поговорим в этой же статье чуть позже.
Закон Ома для полной цепи
Закон полного тока
В реальных условиях нужно учитывать сопротивление источника тока (Rи). В этой ситуации действуют рассмотренные выше принципы. Однако базовую формулу нужно изменить следующим образом:
I = E/ (R + Rи), где E – это электродвижущая сила (ЭДС) аккумулятора. После преобразования можно получить выражение:
Rи = (E/I) – R.
Сфера применения
Закон Ома не является базовым законом в физике, это лишь удобная зависимость одних значений от других, которая подходит почти в любых ситуациях на практике. Поэтому проще будет перечислить ситуации, когда закон может не срабатывать:
- Если есть инерция носителей заряда, например, в некоторых высокочастотных электрических полях;
- В сверхпроводниках;
- Если провод нагревается до такой степени, что вольтамперная характеристика перестает быть линейной. Например, в лампах накаливания;
- В вакуумных и газовых радиолампах;
- В диодах и транзисторах.
Интересно почитать: инструкция как прозвонить транзистор.
Закон Ома для цепи переменного тока
Конденсатор в цепи переменного тока
При подключении нагрузки к такому источнику следует учитывать наличие в цепи компонентов с реактивными составляющими электрического сопротивления, конденсаторов и катушек индукции. Закон Ома для цепей переменного тока действует исключительно для амплитудных и эффективных значений напряжения и тока.
Распределение фаз в цепи с активным сопротивлением
В представленной на рисунке схеме реактивные составляющие отсутствуют. Для этого случая векторы тока и напряжения совпадают по фазе. Расчеты с активным сопротивлением можно выполнять с применением рассмотренных выше формул.
Индуктивная и емкостная нагрузки
При подключении элементов с реактивными характеристиками угол между векторами составляет 90°. В схеме с индуктивностью (емкостью) ток будет отставать от напряжения по фазе либо опережать соответственно. Для расчета напряжения можно применять следующие формулы (w – циклическая частота):
- UL = I * w*L;
- UC = I/ (w*C);
- ХL = w*L;
- XC = 1/(w*C).
Для полной цепи надо учесть суммарное значение сопротивления – Z. В следующем перечне приведены методы вычислений при наличии в цепи типовых комбинаций пассивных компонентов:
- резистор и катушка индуктивности (последовательное соединение): I = U/ √(R2 + (w*L)2);
- конденсатор с емкостью С и резистор: I = U/√(R2 + (1/w*C)2);
- цепочка RLC: I = U/√(R2 + (w*L + 1/w*L)2).
Сдвиг фаз можно представить следующими выражениями:
- tg ϕ = (UL — UC)/ UR = (ХL — XC)/R;
- cos ϕ = UR/U = R/ Z.
Для расчета активной мощности (Pа) в нагрузке применяют действующие значения тока (Iд) и напряжения (Uд):
Pа = Iд * Uд * cos ϕ.
Последний множитель фактически определяет количество потребляемой электроэнергии. Остаток расходуется на обменные процессы, нагрев соединительных проводов.
К сведению. Производители трансформаторов, электродвигателей и других мощных нагрузок с выраженными реактивными характеристиками приводят значение cos ϕ в сопроводительной документации. По этому коэффициенту можно сделать правильный вывод об энергетической эффективности оборудования. Соответствующую поправку делают при расчете цепей питания, чтобы обеспечить достаточное поперечное сечение проводников для предотвращения чрезмерного повышения температуры и возникновения аварийных ситуаций.
Отдельно следует рассмотреть резонанс. Это явление сопровождается резким увеличением силы тока в цепи при совпадении частоты сигнала (wc) с частотой созданного колебательного контура (wк). В подобной ситуации не исключено повреждение компонентов схемы и проводников.
Обозначенные условия создает увеличение сопротивления в цепи, которое обеспечивается равенством реактивных составляющих:
ХL = w*L = XC = 1/(w*C).
Частоты совпадают в следующем случае (последовательное соединение):
wc = wк = 1/√(L*С).
Напряжения на конденсаторе и катушке становятся равными по амплитуде, но противоположными по фазе. Ток определяется с учетом базовых определений закона Ома:
I = U/Z = U/ √ R2 + (2π * w * L — 1/2π * w * C)2.
Расчет трехфазной цепи, соединенной звездой
Трехфазную цепь, соединенную звездой, удобнее всего рассчитать методом двух узлов.
На рис. 7.5 изображена трехфазная цепь при соединении звездой. В общем случае сопротивления фаз нагрузки неодинаковы (Z A ≠ Z B ≠ Z C )
Нейтральный провод имеет конечное сопротивление Z N .
В схеме между нейтральными точками источника и нагрузки возникает узловое напряжение или напряжение смещения нейтрали.
Это напряжение определяется по формуле (6.2).
Фазные токи определяются по формулам (в соответствии с законом Ома для активной ветви):
Ток в нейтральном проводе
1. Симметричная нагрузка . Сопротивления фаз нагрузки одинаковы и равны некоторому активному сопротивлению Z A = Z B = Z C = R.
Узловое напряжение
Читайте также: Лечение шейного остеохондроза токами
потому что трехфазная система ЭДС симметрична, .
Напряжения фаз нагрузки и генератора одинаковы:
Фазные токи одинаковы по величине и совпадают по фазе со своими фазными напряжениями. Ток в нейтральном проводе отсутствует
В трехфазной системе, соединенной звездой, при симметричной нагрузке нейтральный провод не нужен.
На рис. 6.6 изображена векторная диаграмма трехфазной цепи для симметричной нагрузки.
2. Нагрузка несимметричная , R A B = R C , но сопротивление нейтрального провода равно нулю: Z N = 0. Напряжение смещения нейтрали
Фазные напряжения нагрузки и генератора одинаковы
Фазные токи определяются по формулам
Вектор тока в нейтральном проводе равен геометрической сумме векторов фазных токов.
На рис. 6.7 приведена векторная диаграмма трехфазной цепи, соединенной звездой, с нейтральным проводом, имеющим нулевое сопротивление, нагрузкой которой являются неодинаковые по величине активные сопротивления.
3. Нагрузка несимметричная, R A B = R C , нейтральный провод отсутствует,
В схеме появляется напряжение смещения нейтрали, вычисляемое по формуле:
Система фазных напряжений генератора остается симметричной. Это объясняется тем, что источник трехфазных ЭДС имеет практически бесконечно большую мощность. Несимметрия нагрузки не влияет на систему напряжений генератора.
Из-за напряжения смещения нейтрали фазные напряжения нагрузки становятся неодинаковыми.
Фазные напряжения генератора и нагрузки отличаются друг от друга. При отсутствии нейтрального провода геометрическая сумма фазных токов равна нулю.
На рис. 6.8 изображена векторная диаграмма трехфазной цепи с несимметричной нагрузкой и оборванным нейтральным проводом. Векторы фазных токов совпадают по направлению с векторами соответствующих фазных напряжений нагрузки. Нейтральный провод с нулевым сопротивлением в схеме с несимметричной нагрузкой выравнивает несимметрию фазных напряжений нагрузки, т.е. с включением данного нейтрального провода фазные напряжения нагрузки становятся одинаковыми.
Рис. 6.8
Закон Ома для цепи постоянного тока
Классическая схема закона Ома выглядит так:
А звучит и того проще – ток, протекающей на участке цепи, будет равен отношению напряжения цепи к ее сопротивлению, что выражается формулой:
Но ведь мы знаем, что помимо активного сопротивления R, существует и реактивные сопротивления индуктивности ХL и емкости XC. А ведь согласитесь, что электрические схемы с чисто активным сопротивлением встречаются крайне редко. Давайте рассмотрим схему, в которой последовательно включена катушка индуктивности L, конденсатор С и резистор R:
Помимо чисто активного сопротивления R, индуктивность L и емкость С имеют и реактивные сопротивления ХL и XC, которые выражены формулами:
Где ω это циклическая частота сети, равная ω = 2πf. f – частота сети в Гц.
Для постоянного тока частота равна нулю (f = 0), соответственно реактивное сопротивление индуктивности станет равным нулю (формула (1)), а емкости – бесконечности (2), что приведет к разрыву электрической цепи. Отсюда можно сделать вывод, что реактивное сопротивление элементов в цепях постоянного напряжения отсутствует.
Использование закона Ома при параллельном и последовательном соединении
При последовательном соединении элементы цепи подключаются друг за другом последовательно. Так как такая электрическая цепь является неразветвленной, сила тока на каждом ее участке будет одинаковая. Пример последовательного соединения — лампочки в новогодней гирлянде.
При последовательном соединении элементов основные параметры электроцепи рассчитываются следующим образом:
- Сила тока по формуле:
Где (I) — общая сила тока в электроцепи, (I_1) — сила тока первого участка, (I_2) — сила тока второго участка, (I_3) — сила тока третьего участка.
- Напряжение по формуле:
Где (U) — общее напряжение, (U_1) — напряжение первого участка, (U_2) — напряжение второго участка, (U_3) — напряжение третьего участка.
- Сопротивление согласно формуле:
Где (R) — общее сопротивление в цепи, (R_1) — сопротивление первого участка, (R_2) — сопротивление второго участка, (R_3) — сопротивление третьего участка.
Подключая элементы в цепь параллельно, получают разветвленную электрическую цепь. Примером такого соединения является стандартная разводка электричества по квартире, когда в комнате одновременно можно включить несколько предметов бытовой техники и верхнее освещение.
При параллельном соединении элементов основные параметры электроцепи рассчитываются следующим образом:
Где (I) — общая сила тока в электроцепи, (I_1, I_2, I_3) — сила тока первого, второго и третьего участков соответственно.
Где (U) — общее напряжение, (U_1, U_2, U_3) — напряжение первого, второго и третьего участков соответственно.
Где (R) — общее сопротивление в цепи, (R_1, R_2, R_3) — сопротивление первого, второго и третьего участков соответственно.
Трактовка и пределы применимости закона Ома
Закон Ома для неоднородного участка
Для корректных расчетов следует учесть ограниченность действия рассмотренных методик. Законом Ома установлены базовые зависимости, которые сохраняются в сравнительно узком частотном диапазоне. Подразумевается применение компонентов с «идеальными» параметрами. Паразитные характеристики, взаимное влияние и отдельные внешние воздействия не учитываются.
Сверхпроводимость
В следующем списке приведены примеры, когда формулы закона Ома не описывают физические процессы с достаточной точностью:
- При значительном понижении температуры уменьшается амплитуда колебаний компонентов молекулярной решетки металлов. Это улучшает условия для прохождения заряженных частиц. На определенном уровне возникает сверхпроводимость, которая характеризуется минимальными потерями энергии в проводнике.
- В диапазоне сверхвысоких частот следует учитывать инерционные характеристики заряженных частиц. Определенное значение приобретают поверхностные токи.
- По мере нагрева на определенном уровне проводимость материала изменяется нелинейно, что исключает возможность применения представленных формул.
- Высоковольтное напряжение провоцирует пробой диэлектрика.
Последовательное и параллельное включение элементов
Для элементов электрической цепи (участка цепи) характерным моментом является последовательное либо параллельное соединение. Соответственно, каждый вид соединения сопровождается разным характером течения тока и подводкой напряжения. На этот счёт закон Ома также применяется по-разному, в зависимости от варианта включения элементов.
Цепь последовательно включенных резистивных элементов
Применительно к последовательному соединению (участку цепи с двумя компонентами) используется формулировка:
- I = I1= I2 ;
- U = U1+ U2 ;
- R = R1+ R2
Такая формулировка явно демонстрирует, что, независимо от числа последовательно соединенных резистивных компонентов, ток, текущий на участке цепи, не меняет значения. Величина напряжения, приложенного к действующим резистивным компонентам схемы, является суммой и составляет в целом значение источника ЭДС.
При этом напряжение на каждом отдельном компоненте равно: Ux = I * Rx. Общее сопротивление следует рассматривать как сумму номиналов всех резистивных компонентов цепи.
Цепь параллельно включенных резистивных элементов
На случай, когда имеет место параллельное включение резистивных компонентов, справедливой относительно закона немецкого физика Ома считается формулировка:
- I = I1+ I2 … ;
- U = U1= U2 … ;
- 1 / R = 1 / R1+ 1 / R2 + …
Не исключаются варианты составления схемных участков «смешанного» вида, когда используется параллельное и последовательное соединение. Для таких вариантов расчет обычно ведется изначальным расчетом резистивного номинала параллельного соединения. Затем к полученному результату добавляется номинал резистора, включенного последовательно.
Интегральная и дифференциальная формы закона
Все вышеизложенные моменты с расчетами применимы к условиям, когда в составе электрических схем используются проводники, так сказать, «однородной» структуры. Между тем на практике нередко приходится сталкиваться с построением схематики, где на различных участках структура проводников меняется. К примеру, используются провода большего сечения или, напротив, меньшего, сделанные на основе разных материалов.
Для учёта таких различий существует вариация, так называемого, «дифференциально-интегрального закона Ома». Для бесконечно малого проводника рассчитывается уровень плотности тока в зависимости от напряженности и величины удельной проводимости.
Под дифференциальный расчет берется формула: J = ό * E. Для интегрального расчета, соответственно, формулировка: I * R = φ1 – φ2 + έ Однако эти примеры скорее уже ближе к школе высшей математики и в реальной практике простого электрика фактически не применяются.
Сила тока
Электрическим током называется упорядоченное (направленное) движение заряженных частиц. Сила электрического тока — это величина ($I$), характеризующая упорядоченное движение электрических зарядов и численно равная количеству заряда $∆q$, протекающего через определенную поверхность $S$ (поперечное сечение проводника) за единицу времени:
$I={∆q}/{∆t}$
Итак, чтобы найти силу тока $I$, надо электрический заряд $∆q$, прошедший через поперечное сечение проводника за время $∆t$, разделить на это время. Сила тока зависит от заряда, переносимого каждой частицей, скорости их направленного движения и площади поперечного сечения проводника.
Рассмотрим проводник с площадью поперечного сечения $S$. Заряд каждой частицы $q_0$. В объеме проводника, ограниченном сечениями $1$ и $2$, содержится $nS∆l$ частиц, где $n$ — концентрация частиц. Их общий заряд $q=q_{0}nS∆l$. Если частицы движутся со средней скоростью $υ$, то за время $∆t={∆l}/{υ}$ все частицы, заключенные в рассматриваемом объеме, пройдут через поперечное сечение $2$. Сила тока, следовательно, равна:
$I={∆q}/{∆t}={q_{0}nS∆l·υ}/{∆l}=q_{0}nυS$
В СИ единица силы тока является основной и носит название ампер (А) в честь французского ученого А. М. Ампера (1755-1836). Силу тока измеряют амперметром. Принцип устройства амперметра основан на магнитном действии тока. Оценка скорости упорядоченного движения электронов в проводнике, проведенная по формуле для медного проводника с площадью поперечного сечения $1мм^2$, дает весьма незначительную величину — $∼0.1$ мм/с.
Читайте также:формулы для конденсаторов
Энергия поля конденсатора
Энергия заряженного конденсатора выражается формулами
$E_n={qU}/{2}={q^2}/{2C}={CU^2}/{2}$
которые выводятся с учетом выражений для связи работы и напряжения и для емкости плоского конденсатора. Энергия электрического поля. Объемная плотность энергии электрического поля (энергия поля в единице объема) напряженностью $Е$ выражается формулой:
$ω={εε_{0}E^2}/{2}$
где $ε$ — диэлектрическая проницаемость среды, $ε_0$ — электрическая постоянная.
Электрический конденсатор
Электрический конденсатор (от лат. condensare, буквально сгущать, уплотнять) — устройство, предназначенное для получения электрической емкости заданной величины, способное накапливать и отдавать (перераспределять) электрические заряды.
Конденсатор — это система из двух или нескольких равномерно заряженных проводников с равными по величине зарядами, разделенных слоем диэлектрика. Проводники называются обкладками конденсатора. Как правило, расстояние между обкладками, равное толщине диэлектрика, намного меньше размеров самих обкладок, так что поле в конденсаторе практически все сосредоточено между его обкладками. Если обкладки являются плоскими пластинами, поле между ними однородно. Электроемкость плоского конденсатора определяется по формуле:
$C={q}/{U}={ε_{0}εS}/{d}$
где $q$ — заряд конденсатора, $U$ — напряжение между его обкладками, $S$ — площадь пластины, $d$ — расстояние между пластинами, $ε_{0}$ — электрическая постоянная, $ε$ — диэлектрическая проницаемость среды.
Под зарядом конденсатора понимают абсолютное значение заряда одной из пластин.
Электроемкость
Электроемкостью проводника $С$ называют численную величину заряда, которую нужно сообщить проводнику, чтобы изменить его потенциал на единицу:
$C={q}/{φ}$
Емкость характеризует способность проводника накапливать заряд. Она зависит от формы проводника, его линейных размеров и свойств среды, окружающей проводник. Единицей емкости в СИ является фарада ($Ф$) — емкость проводника, в котором изменение заряда на $1$ кулон меняет его потенциал на $1$ вольт.
Параллельное и последовательное соединение проводников
Для параллельного соединения проводников справедливы следующие соотношения:
1) электрический ток, поступающий в точку $А$ разветвления проводников (она называется также узлом), равен сумме токов в каждом из элементов цепи:
$I=I_1+I_2;$
2) напряжение $U$ на концах проводников, соединенных параллельно, одно и то же:
$U=U_1=U_2;$
3) при параллельном соединении проводников складываются их обратные сопротивления:
${1}/{R}={1}/{R_1}+{1}/{R_2}, R={R_1·R_2}/{R_1+R_2};$
4) сила тока и сопротивление в проводниках связаны соотношением:
${I_1}/{I_2}={R_2}/{R_1}$
Для последовательного соединения проводников в цепи справедливы следующие соотношения:
1) для общего тока $I$:
$I=I_1=I_2,$
где $I_1$ и $I_2$ — ток в проводниках $1$ и $2$ соответственно; т. е. при последовательном соединении проводников сила тока на отдельных участках цепи одинакова;
2) общее напряжение $U$ на концах всего рассматриваемого участка равно сумме напряжений на отдельных его участках:
$U=U_1+U_2;$
3) полное сопротивление $R$ всего участка цепи равно сумме последовательно соединенных сопротивлений:
$R=R_1+R_2;$
4) также справедливо соотношение:
${U_1}/{U_2}={R_1}/{R_2}$
Мощность электрического тока
Действие тока характеризуют не только работой $A$, но и мощностью $Р$. Мощность тока показывает, какую работу совершает ток за единицу времени. Если за время $t$ была совершена работа $А$, то мощность тока $P={A}/{t}$. Подставляя в это равенство выражение ($A=IUt$), получаем:
$P=IU$
Это выражение можно переписать в разных формах, воспользовавшись законом Ома для участка цепи:
$P=IU=I^{2R}={U^2}/{R}$
Из соотношения для ЭДС легко получить мощность источника тока:
$P_ε=εI$
В СИ работу выражают в джоулях (Дж), мощность — в ваттах (Вт), а время -в секундах (с). При этом
$1$Вт$=1$Дж/с, $1$Дж$=1$Вт$·$с.
Рассчитаем наибольшую допустимую мощность потребителей электроэнергии, которые могут одновременно работать в квартире. Так как в жилых зданиях сила тока в проводке не должна превышать $I=10$А, то при напряжении $U=220$В соответствующая электрическая мощность оказывается равной:
$Р=10А·220В=2200Вт=2.2кВт.$
Одновременное включение в сеть приборов с большей суммарной мощностью приведет к увеличению силы тока, и потому недопустимо.
В быту работу тока (или израсходованную на совершение этой работы электроэнергию) измеряют с помощью специального прибора, называемого электрическим счетчиком (счетчиком электроэнергии). При прохождении тока через этот счетчик внутри его начинает вращаться легкий алюминиевый диск. Скорость его вращения прямо пропорциональна силе тока и напряжению. Поэтому по числу оборотов, сделанных им за данное время, можно судить о работе, совершенной током за это время. Работа тока при этом выражается обычно в киловатт-часах ($кВт·ч$).
$1кВт·ч$ — это работа, совершаемая электрическим током мощностью $1кВт$ в течение $1ч$. Так как $1кВт=1000Вт$, а $1ч=3600с$, то $1кВт·ч=1000Вт·3600с=3600000 Дж$.
Закон Ома — основа электротехники
Это основное уравнение, используемое для изучения электрических цепей, было получено экспериментальным путем Георгом Симоном Омом. Он родился в Эрлангене Германии в 1787 году и поступил в университет этого города в 1805 году, где он получил докторскую степень. Георг преподавал математику в школах и проводил эксперименты по физике в школьной физической лаборатории, пытаясь понять принципы электромагнетизма.
В 1827 году он опубликовал статьи, в которых описана математическая модель того, как контуры проводят тепло в работах Фурье. Ом получил экспериментальные данные, на базе которых впервые смог сформулировать свой закон 8 января 1826 года. Он установил, что разность потенциалов между двумя точками в цепи равна произведению тока между ними на общее сопротивление всех электрических устройств. Чем больше напряжение батареи или ее общая разность электропотенциалов, тем больше будет ее ток. Аналогично, с большим сопротивлением он будет меньше.
Но его исследования не нашли должного понимания и Георг оставил свою работу в Кельне. Только в 1833 году он получил должность профессора в Нюрнберге. Выводы Ома послужили катализатором для новейших исследований по электричеству. В 1841 году ученого наградили медалью Копли, а в 1872 году «Ом» был принят в качестве единицы сопротивления в электрических цепях.
Закон Ома для полной электрической цепи описывает протекание тока через проводящие металлы, когда применяются различные уровни напряжения. Некоторые материалы, такие как электропровода, имеют небольшое сопротивление току — этот тип материала называется проводником.
Важно! В других случаях материал может препятствовать протеканию тока, но, тем не менее, допускает его использование. В электрических цепях эти компоненты часто называют резисторами. Существуют материалы, которые практически не пропускают ток, они называются изоляторами.
Мощность в трехфазных цепях
Трехфазная цепь является обычной цепью синусоидального тока с несколькими источниками.
Активная мощность трехфазной цепи равна сумме активных мощностей фаз
Формула (6.5) используется для расчета активной мощности в трехфазной цепи при несимметричной нагрузке.
При симметричной нагрузке:
При соединении в треугольник симметричной нагрузки
Источник
Законы Ома и их качественное объяснение
- Закон Ома: кто придумал, определение
- Формулировки и основные формулы
- Объяснение закона Ома в классической теории
- Закон Ома для полной (замкнутой) цепи
- Использование закона Ома при параллельном и последовательном соединении
- Закон Ома для переменного и постоянного тока
- Закон Ома для однородного и неоднородного участка цепи
- Закон Ома: кто придумал, определение
- Формулировки и основные формулы
- Объяснение закона Ома в классической теории
- Закон Ома для полной (замкнутой) цепи
- Использование закона Ома при параллельном и последовательном соединении
- Закон Ома для переменного и постоянного тока
- Закон Ома для однородного и неоднородного участка цепи
Есть такие формулы и законы, которые люди узнают еще в школе, а помнят всю жизнь. Обычно это несложные уравнения, состоящие из двух-трех физических величин и объясняющие какие-то фундаментальные вещи в науке, основу основ. Закон Ома как раз такая штука.
Читайте также: Максимальный ток разряда элементов питания
Действующие значения силы тока и напряжения
По причине необходимости совпадения с уравнением для мощности постоянного тока, нам приходится ввести определения действующих значений силы тока и напряжения:
I Д = l 0 2 ; U Д = U 0 2 .
Таблица удельных сопротивлений различных материалов
Удельное сопротивление ρ, Ом*мм2/м |
Удельное сопротивление ρ, Ом*мм2/м |
Алюминий |
0,028 |
Бронза |
0,095 — 0,1 |
Висмут |
1,2 |
Вольфрам |
0,05 |
Железо |
0,1 |
Золото |
0,023 |
Иридий |
0,0474 |
Константан ( сплав Ni-Cu + Mn) |
0,5 |
Латунь |
0,025 — 0,108 |
Магний |
0,045 |
Манганин (сплав меди марганца и никеля — приборный) |
0,43 — 0,51 |
Медь |
0,0175 |
Молибден |
0,059 |
Нейзильбер (сплав меди цинка и никеля) |
0,2 |
Натрий |
0,047 |
Никелин ( сплав меди и никеля) |
0,42 |
Никель |
0,087 |
Нихром ( сплав никеля хрома железы и марганца) |
1,05 — 1,4 |
Олово |
0,12 |
Платина |
0.107 |
Ртуть |
0,94 |
Свинец |
0,22 |
Серебро |
0,015 |
Сталь |
0,103 — 0,137 |
Титан |
0,6 |
Хромаль |
1,3 — 1,5 |
Цинк |
0,054 |
Чугун |
0,5-1,0 |
Ответ: нить накаливания сделана из константана.
Соединение в треугольник. Схема, определения
Если конец каждой фазы обмотки генератора соединить с началом следующей фазы, образуется соединение в треугольник. К точкам соединений обмоток подключают три линейных провода, ведущие к нагрузке. На рис. 6.3 изображена трехфазная цепь, соединенная треугольником. Как видно из рис. 6.3, в трехфазной цепи, соединенной треугольником, фазные и линейные напряжения одинаковы.
I A , I B , I C — линейные токи;
I ab , I bc , I ca — фазные токи.
Линейные и фазные токи нагрузки связаны между собой первым законом Кирхгофа для узлов а, b, с.
Линейный ток равен геометрической разности соответствующих фазных токов. На рис. 7.4 изображена векторная диаграмма трехфазной цепи, соединенной треугольником при симметричной нагрузке. Нагрузка является симметричной, если сопротивления фаз одинаковы. Векторы фазных токов совпадают по направлению с векторами соответствующих фазных напряжений, так как нагрузка состоит из активных сопротивлений.
Из векторной диаграммы видно, что
,
I л = √3 I ф- при симметричной нагрузке.
Читайте также: Использование драйвера ключей нижнего и верхнего уровней IR2110 — объяснение и примеры схем
Трехфазные цепи, соединенные звездой, получили большее распространение, чем трехфазные цепи, соединенные треугольником. Это объясняется тем, что, во-первых, в цепи, соединенной звездой, можно получить два напряжения: линейное и фазное. Во-вторых, если фазы обмотки электрической машины, соединенной треугольником, находятся в неодинаковых условиях, в обмотке появляются дополнительные токи, нагружающие ее. Такие токи отсутствуют в фазах электрической машины, соединенных по схеме «звезда». Поэтому на практике избегают соединять обмотки трехфазных электрических машин в треугольник.
Объяснение закона Ома в классической теории
Формула закона, известная всем со школьных лет, выглядит так:
Из нее легко выводятся формулы для определения (U) :
и для определения (R) :
Единицами измерения силы тока являются амперы, напряжения — вольты, сопротивление измеряется в омах.
Данный закон верен для линейного участка цепи, на котором зафиксировано стабильное сопротивление.
Когда «сопротивление бесполезно»
Электрический ток — умный и хитрый парень. Если у него есть возможность обойти резистор и пойти по идеальному проводнику без сопротивления, он это сделает. При этом с резисторами просто разных номиналов это не сработает: он не пойдет просто через меньшее сопротивление, а распределится согласно закону Ома — больше тока пойдет туда, где сопротивление меньше, и наоборот.
А вот на рисунке ниже сопротивление цепи равно нулю, потому что ток через резистор не пойдет.
Ток идет по пути наименьшего сопротивления.
Теперь давайте посмотрим на закон Ома для участка цепи еще раз.
Закон Ома для участка цепи I = U/R I — сила тока [A] U — напряжение [В] R — сопротивление [Ом] |
Подставим сопротивление, равное 0. Получается, что знаменатель равен нулю, а на математике говорят, что на ноль делить нельзя. Но мы вам раскроем страшную тайну, только не говорите математикам: на ноль делить можно. Если совсем упрощать такое сложное вычисление (а именно потому что оно сложное, мы всегда говорим, что его нельзя производить), то получится бесконечность.
То есть:
I = U/0 = ∞
Такой случай называют коротким замыканием — когда величина силы тока настолько велика, что можно устремить ее к бесконечности. В таких ситуациях мы видим искру, бурю, безумие — и все ломается.
Это происходит, потому что две точки цепи имеют между собой напряжение (то есть между ними есть разница). Это как если вдоль реки неожиданно появляется водопад. Из-за этой разницы возникает искра, которую можно избежать, поставив в цепь резистор.
Именно во избежание коротких замыканий нужно дополнительное сопротивление в цепи.
Нелинейные элементы и цепи
Как отмечено в предыдущем разделе, калькулятор и элементарные технологии расчета в отдельных ситуациях непригодны.
График изменения сопротивления
На рисунке приведены результаты эксперимента с типовой лампой накаливания. Видно, что при увеличении напряжения сопротивление изменяется нелинейно. Данное явление сопряжено с нагревом вольфрамовой нити. Для подобных ситуаций необходимы сведения о значениях проводимости в отдельных точках графика. Например, можно использовать тангенс угла α по отношению к горизонтальной оси. В этом случае статическое электрическое сопротивление для определенного места (Rст) рассчитывают по формуле:
Rст = Uα/Iα = tg α.
Также применяют значение, эквивалентное минимальному изменению тока и напряжения (ΔI и ΔU соответственно). По этой методике Rст = ΔU / ΔI = tg ϕ, где ϕ – угол между касательной в контрольной точке и осью абсцисс.
Нелинейные элементы
На первом рисунке показана вольтамперная характеристика серийного диода. График подтверждает смещение полупроводникового перехода в зависимости от приложенного напряжения. Хорошо видно, как на горизонтальном участке существенное изменение потенциала сопровождается незначительной реакцией силы тока.
Второй рисунок демонстрирует зависимость характеристик от уровня светового потока (Ф). Стандартный фотодиод функционирует в области обратного смещения p-n перехода. Это наглядный пример двухполюсного радиотехнического компонента с нелинейными параметрами.
На последнем рисунке изображена вольтамперная характеристика тиристора. Работой этого устройства управляют с помощью дополнительной области, созданной в полупроводниковом переходе. Аналогичные по сути решения применяют в транзисторах.
Цепи, которые будут содержать подобные компоненты, называют нелинейными. При расчетах учитывают особенности ВАХ, время переключения. Определенное значение имеет класс изделия. К безынерционным относят элементы с быстрой реакцией на управляющие воздействия.
Что такое ЭДС и откуда она берется
ЭДС расшифровывается, как электродвижущая сила. Обозначается греческой буквой ε и измеряется, как и напряжение, в Вольтах.
- ЭДС — это сила, которая движет заряженные частицы в цепи. Она берется из источника тока. Например, из батарейки.
Химическая реакция внутри гальванического элемента (это синоним батарейки) происходит с выделением энергии в электрическую цепь. Именно эта энергия заставляет частицы двигаться по проводнику.
Зачастую напряжение и ЭДС приравнивают и говорят, что это одно и то же. Формально, это не так, но при решении задач чаще всего и правда нет разницы, так как эти величины обе измеряются в Вольтах и определяют очень похожие по сути своей процессы.
В виде формулы Закон Ома для полной цепи будет выглядеть следующим образом:
Закон Ома для полной цепи I = ε/(R + r) I — сила тока [A] ε — ЭДС [В] R — сопротивление [Ом] r — внутреннее сопротивление источника [Ом] |
Любой источник не идеален. В задачах это возможно («источник считать идеальным», вот эти вот фразочки), но в реальной жизни — точно нет. В связи с этим у источника есть внутреннее сопротивление, которое мешает протеканию тока.
Решим задачу на полную цепь.
Задачка
Найти силу тока в полной цепи, состоящей из одного резистора сопротивлением 3 Ом и источником с ЭДС равной 4 В и внутренним сопротивлением 1 Ом
Решение:
Возьмем закон Ома для полной цепи:
I = ε/(R + r)
Подставим значения:
I = 4/(3+1) = 1 A
Ответ: сила тока в цепи равна 1 А.
Реостат
Есть такие выключатели, которые крутишь, а они делают свет ярче-тусклее. В такой выключатель спрятан резистор с переменным сопротивлением — реостат.
Стрелка сверху — это ползунок. По сути, он отсекает ту часть резистора, которая находится от него справа. То есть, если мы двигаем ползунок вправо — мы увеличиваем длину резистора, а значит и сопротивление. И наоборот — двигаем влево и уменьшаем.
По формуле сопротивления это очень хорошо видно, так как длина проводника находится в числителе:
Сопротивление R = ρ l/S R — сопротивление [Ом] l — длина проводника [м] S — площадь поперечного сечения [мм^2] ρ — удельное сопротивление [Ом*мм^2/м] |