Осциллограф: необходимые знания для работы с прибором для начинающих

Осциллограф: необходимые знания для работы с прибором для начинающих

Органы управления

О том, как пользоваться осциллографом при проведении измерений, проще всего рассказать на примере аналоговых приборов, которые до сих пор не потеряли своей актуальности и которым в отдельных случаях даже отдаётся предпочтение. Знакомство с этим относительно сложным электронным устройством следует начать с изучения его лицевой панели, на которую выводятся все необходимые органы управления.

Читайте также:  Как посчитать электроэнергию по счетчику — формула расчета

Панель управления
Панель управления

На ней можно различить несколько зон, ответственных за определённую функцию из полного набора возможностей этого прибора. Прежде всего, обращает на себя внимание экран устройства, на котором отображаются все параметры измеряемого сигнала (его форма, размах и длительность).

Помимо этого, на лицевой панели выделяются следующие функциональные зоны:

  • Модуль развёртки, задающий режимы измерения сигнала по его частотной характеристике (обозначается как «Длительность»);
  • Усилительный блок, ответственный за чувствительность измерения («Усиление»);
  • Органы управления положением отображения сигнала на экране устройства, позволяющие перемещать его как по вертикали, так и по горизонтали (вращающиеся ручки с соответствующими стрелками);
  • Модуль синхронизации, задающий способ запуска развёртки, которая может быть автоматической, ручной или принудительной.

К основному функциональному набору следует отнести дополнительные регуляторы и переключатели, расширяющие возможности осциллографа до требуемого в каждом конкретном случае уровня. Знакомство с их назначением поможет определиться с тем, как работать с осциллографом в тех или иных ситуациях.

Обратите внимание! В различных моделях набор вспомогательных опций может иметь заметные отличия.

Отличаться может и их состав: более «скромный» для простых и дешёвых образцов изделий и значительно расширенный – для моделей профессионального уровня.

Возможности двухканального прибора

Двухлучевой осциллограф применяется при необходимости измерения фазового сдвига относительно друг друга для отображаемых сигналов. Идет графическое представление на экране одного цвета, поэтому для наглядности имеет смысл разнести амплитуды.

Развертка

Движение луча ЭЛТ по горизонтальной оси при отсутствии исследуемого сигнала на информационных входах называется разверткой, при подаче он будет развернут на временном интервале.

Принцип работы регулятора развертки

Развертка создается с помощью генератора, работа которого зависит от выбранного режима внутренней или внешней синхронизации. Внутренняя – частота задается вручную или синхронизируется с питающей сетью, внешняя – запуск генератора от входного импульса, различают запуск по фронту, спаду или от стороннего источника. Регулятор развертки служит для увеличения/уменьшения периода отображения сигнала.

Блок управления параметрами синхронизации

Позволяет установить значение напряжения исследуемого сигнала и момент (фронт/спад), когда следует запускать генератор. Правильная регулировка позволит добиться стабильного изображения, что важно для снятия данных.

Совет. От устойчивости картинки зависит погрешность измерения – она должна быть качественной.

На что обратить внимание в Oscilloscope, ориентиры для выбора

Рассмотрим основы характеристик O-Scope, которые послужат также ориентирами, как выбрать осциллограф, надежную его модель.

характеристики O-Scope

Способы, чтобы проверить осциллограф:

  • встроенным генератором (Калибровка), все цифровые модели имеют его. Включают режим и смотрят, есть ли синусоида. Если магазин специализированный, там должен быть внешний генератор для проверки;
  • старые осциллографы начинают подвирать со временем, как проверить их есть простой способ: взять эталонный источник, например, ту же батарейку 1.5 В;
  • экран должен быть достаточной яркости, луч без артефактов;
  • дотронуться до щупа: фаза покажет синусоиду (правда с большими помехами), земля — ровную линию;
  • посредством ПК, специальным ПО.

ПО

Полоса пропускания

Это минимальная и максимальная частоты, амплитудность, то есть диапазон, который может измерить прибор. Достаточно учесть верхнюю черту; нижнюю рисуют все устройства.

Частота дискретизации (Sampling rate)

У цифровых моделей. Данный параметр связан с предыдущим. Чем выше, тем лучше (например, у Siglent SDS — 1×109). Это число считываний за единицу времени, определяет максимальные частоты без потерь на экране. У приборов с несколькими каналами может уменьшаться при задействовании их всех (при покупке надо учесть).

развертки

По теореме Котельникова част. дискр. должна превышать в 2 раза верхнюю рамку пропускания, но на практике потребуется превышение в 4–5 раза. На этом и основывается выбор. Пример для изделия с полосой до 200–800 МГц (важно учесть параметр при использовании 2 и больше каналов).

Число каналов

Многие модели способны обрабатывать больше сигналов вместе, одновременно раздельно показывая их на мониторе. Обычно от 2 до 4. Иногда включение других каналов сказывается на производительности. Выбор осциллографа рекомендовано делать среди изделий с двумя каналами, что позволит сравнивать исследуемые величины, исчислять фазные сдвиги.  Три и больше входа, это хорошо, но для обычных задач иногда чрезмерно, цена прибора возрастет многократно.

осциллографы

Эквивалентная частота дискретизации

Когда недостаточно реальной част. дискр., итоговая картинка реконструируется по нескольким последовательным измерениям. Пример: анализируется сигнал 200 МГц на модели с част. дискр. 1 млрд. выборок/сек. (1 GSa/s) — получают всего 5 измерений. По теор. Котельникова этого хватает, но можно детализировать (алгоритмическим методом) и активировать опцию: будет не 1 GSa/s, а уже 2 GSa/s.

Глубина памяти

Всегда есть в цифровых моделях (DSO=Digital Storage Oscilloscope). Чем ниже скорость развертки, тем точнее показатели и тем больше значений приходится сохранять прибору в памяти. Чем глубже память — тем лучше. Но иногда наблюдается негативный момент: при медленных измерениях прибор подтормаживает, выбирая изделие, надо поинтересоваться этим нюансом.

частота дискретизации

Обновление экрана

Чем чаще обновляется монитор, тем короче «мертвое время», требуемое для обработки захватываемой информации, более оперативно происходит обновление осциллограмм. Больше шансов, что аппарат покажет малозаметный артефакт. Впрочем, это имеет значение только для фанатов-электронщиков.

Максимальное входное напряжение (питание)

Любой прибор имеет предел по мощности питания, при превышении которого без дополнительных мер он просто сгорит, выйдет из строя. Нужно учитывать параметры обслуживаемых цепей. Пример: макс. напр. в режиме щупа 1:1 — 40 В, в режиме 1:10 — 400 В, то есть лезть в цепь с 400 В и больше без предохранительных мер уже небезопасно.

Устройство и основные технические параметры

Каждый прибор имеет ряд следующих технических характеристик:

  1. Коэффициент возможной погрешности при измерении напряжения (у большинства приборов это значение не превышает 3%).
  2. Значение линии развёртки устройства — чем больше эта характеристика, тем дольше временной промежуток наблюдения.
  3. Характеристика синхронизации, содержащая в себе: диапазон частот, максимальные уровни и нестабильность системы.
  4. Параметры вертикального отклонения сигнала с входной ёмкостью оборудования.
  5. Значения переходной характеристики, показывающие время нарастания и выброс.

Помимо перечисленных выше основных значений, у осциллографов присутствуют дополнительные параметры, в виде амплитудно-частотная характеристики, демонстрирующей зависимость амплитуды от частоты сигнала.

Цифровые осциллографы также обладают величиной внутренней памяти. Этот параметр отвечает за количество информации, которую аппарат может записать.

Дальнейшие действия

Полученные данные следует привести к среднему значению, учесть возможную погрешность устройства и оператора, сохранить информацию. Цифровой прибор все вычисления производит сам, но за удобство нужно платить.

Цифровой осциллограф

Цифровой осциллограф – это осциллограф, построенный на основе цифровой схемотехники. Его главное отличие от аналогового в том, что внутри него идет цифровая обработка сигналов. Цифровой осциллограф может записывать, останавливать, автоматически подгонять и измерять исследуемый сигнал. И это только часть функций!

цифровой осциллограф OWON
цифровой осциллограф OWON

Как подготовить цифровой осциллограф к работе

Включаем осциллограф и цепляем щуп на любой из каналов. Я соединил щуп с первым каналом (CH1)

щуп цифрового осциллографа
щуп цифрового осциллографа

На щупе есть делитель. Ставим его ползунок на 10Х.  В осциллографе по умолчанию также должен стоять делитель на 10Х. Если это не так, ищем в его настройках и ставим в характеристиках канала “10Х”.

1х и 10х на щупе осциллографа
1х и 10х на щупе осциллографа

Каждый нормальный цифровой осциллограф имеет встроенный генератор прямоугольных импульсов с частотой 1000 Герц (1кГц) и амплитудой напряжения в 5 Вольт. Чаще всего этот генератор находится в нижнем правом углу. В нашем случае он называется Probe Comp. Цепляемся за него щупом.

генератор пробного сигнала на осциллографе
генератор пробного сигнала на осциллографе

Все должно выглядеть приблизительно вот так:

настройка цифрового осциллографа
настройка цифрового осциллографа
На дисплее в это время происходит какой-то

[quads id=1]

В этом осциллографе есть волшебная кнопка, от которой я без ума. Это кнопка автоматического позиционирования сигнала Autoscale. Нажал на эту кнопку

автомасштаб на цифровом осциллографе
автомасштаб на цифровом осциллографе

Согласился с условиями автоматического позиционирования сигнала

автомасштабирование на осциллографе
автомасштабирование на осциллографе

и готово!


Но что такое? У нас должен быть ровный прямоугольный периодический сигнал! Вся проблема в том, что щуп осциллографа вносит искажения в сам сигнал, поэтому, его  желательно корректировать каждый раз перед работой.

В современных щупах есть маленький винтик, заточенный под тонкую отвертку. С помощью этого винтика мы будем корректировать щуп.


настройка щупа осциллографа
настройка щупа осциллографа

Крутим и смотрим, что у нас получается на дисплее.



Ого, слишком сильно крутанул винт.

Крутим чуточку в обратную сторону и выравниваем горизонтально вершины сигнала.

сигнал меандр
сигнал меандр

Вот! Совсем другое дело! На дисплее у нас ровные прямоугольные сигналы, следовательно на этом этапе цифровой осциллограф полностью готов к работе.

Как измерить постоянное напряжение цифровым осциллографом

Итак, первым делом выбираем, какое напряжение собираемся измерять. Это делается с помощью кнопочки Coupling (нажимаем клавишу Н1). DC – direct current, что с английского означает “постоянный ток”.

выбор постоянного напряжения на цифровом осциллографе
выбор постоянного напряжения на цифровом осциллографе

 Справа экрана сплывают окошки, и мы выбираем DC (нажимаем клавишу F1)


Все, после этого наш осциллограф полностью готов к измерению постоянного тока.

Откуда будем брать постоянный ток? У меня для этого есть блок питания. Выставим на нем для примера 5 Вольт.

лабораторный блок питания
лабораторный блок питания

Соединяем щупы блока питания и осциллографа. Сигнальный щуп осциллографа желательно соединять с красным плюсовым крокодилом щупа блока питания, а черный щуп (земля) соединить с минусовым черным крокодилом.

щуп осциллографа
щуп осциллографа

Смотрим на дисплей осциллографа

осциллограмма постоянного напряжения на цифровом осциллографе
осциллограмма постоянного напряжения на цифровом осциллографе

Что мы тут видим? А видим мы тут осциллограмму постоянного напряжения.  Постоянное напряжение – это такое напряжение, которое не изменяется во времени.

[quads id=1]

На что стоит обратить внимание? Разумеется, на цену деления. Один квадратик по вертикали у нас равен 2 Вольта. Если считать от центра пересечения жирных штриховых линий, то осциллограмма находится на высоте 2,5 стороны квадратика. Значит, напряжение будет 2,5х2=5 Вольт. Так как мне лень считать, я вывожу эти показания осциллографа прямо на экране (нижняя левая зеленая рамка).


Как измерить переменное напряжение цифровым осциллографом

Для опытов я возьму ЛАТР (Лабораторный автотрансформатор). Как вы помните, ЛАТР понижает или повышает переменное сетевое напряжение.

Лабораторный авто-трансформатор
Лабораторный авто-трансформатор

Выставляем напряжение на ЛАТРе 100 Вольт.


На осциллографе переключаем на АС, что означает alternating current  – переменный ток.


Цепляемся к выходным разъемам ЛАТРа и наблюдаем такую картину.

осциллограмма перменного напряжения
осциллограмма перменного напряжения

С помощью кнопки “Measure” я вывел некоторые интересующие нас параметры:

Vk – среднеквадратичное значение напряжения. В данном случае он  нам показывает напряжение, которое мы подавали с ЛАТРа – это 100 Вольт.

F – частота. В данном случае это частота сети 50 Герц. ЛАТР не меняет частоту сети.

T – период. T=1/F. Как мы с вами видим частота напряжения в сети 50 Герц. Период равен 20 миллисекунд. Если единицу разделить на 20 миллисекунд, то мы как раз получим частоту сигнала.

Как вывести все параметры сигнала

Мы будем рассматривать все наши измеряемые параметры на конкретном примере. Для этого будем использовать генератор частоты  с заранее выставленной частотой в 1 Мегагерц (ну или 1000 КГц) с прямоугольной формой сигнала:

генератор частоты
генератор частоты

Сигнал с генератора частоты на экране осциллографа выглядит вот так.

выбросы прямоугольного сигнала
выбросы прямоугольного сигнала

А где же правильный прямоугольный сигнал? Вот тебе и раз… Ничего с этим не поделаешь. Это есть, было и будет у всех прямоугольных сигналов. Это возникает вследствие несовершенства цепей и радиоэлементов. Особенно хорошо такая осциллограмма прорисовывается на высоких частотах, как в нашем примере.

Осциллограф
Осциллограф

Ладно, давайте выведем все параметры сигнала, которые может вывести наш осциллограф. Для этого нажимаем кнопочку “Measure” , что с англ. означает “измерять”

кнопка измерение сигнала на осциллографе
кнопка измерение сигнала на осциллографе

Далее нажимаем кнопочку “Add” ( с англ. – добавлять), с помощью вспомогательной клавиши H1


И потом нажимаем кнопку “Show All” (с англ. – показать всё) с помощью вспомогательной клавиши F3


В результате всех этих операций у нас выскочит табличка с измеряемыми параметрами сигнала:

параметры сигнала
параметры сигнала

Описание характеристик сигналов

Как вы знаете, осциллограф нам показывает изменение напряжения сигнала во времени. Поэтому, параметры сигналов в основном делятся на два типа:

– Амплитудные

– Временные

[quads id=1]

Давайте рассмотрим основные из них. Начнем слева-направо.

Period – с англ. период. Период сигнала – это время, за которое сигнал повторяется. В нашем случае период обозначается буквой “Т”.

период сигнала
период сигнала

Чтобы самостоятельно посчитать период, нам надо знать значение одной клетки по горизонтали. Внизу осциллограммы можно найти подсказку. Я ее пометил в желтый прямоугольник


Следовательно, одна клеточка по горизонтали равна 500 наносекунд. А так как у нас период длится ровно две клеточки, значит 500 х 2 = 1000 наносекунда или 1 микросекунда.

Сходятся ли наши расчетные показания с показаниями автоматических измерений? Смотрим и проверяем.


Стопроцентное попадание! Кстати, чтобы не было дальнейших вопросов, привожу небольшую табличку.

“Пико” – буквой “p”

“Нано” – буквой “n”

“Микро” обозначается буквой “u”, как и в маркировке современных конденсаторов.

“Милли”  – буквой “m”.

Осциллограф

Freq. Полное название frequency – с англ. частота. Обозначается буквой “F”. Частоту очень легко можно вычислить по формуле, зная период Т.

F=1/T

В нашем случае получаем 1/1х10-6=106=1 Мегагерц (MHz).  Смотрим на наши автоматические измерения:


Ну разве не чудо? 😉

Следующий показатель Mean. В нашем случае обозначается просто буковкой “V”. Он означает среднюю величину сигнала и используется для измерения постоянного напряжения. В данный момент этот параметр не представляет интереса, потому как измеряется переменный ток и в значении этого сигнала показывается какая-то вата. Постоянный ток меряет нормально, можно вывести этот параметр на дисплей, что мы и делали в прошлой статье:


Еще один интересный параметр: PK-PK. Называется он Peak-to-Peak и показывает напряжение от пика до пика. Обозначается как Vp. Что это за напряжение от пика до пика, показано на осциллограмме ниже:


Так как мы видим, что значение нашего квадратика  равно 1 Вольту (внизу слева)


То можно высчитать и напряжение от пика до пика. Оно будет где-то эдак 5 Вольт. Сверяемся с автоматическим измерением


Почти в тютельку!

Остальные параметры сигнала не столь важны для начинающих электронщиков.

Плюсы и минусы цифрового осциллографа

Начнем с плюсов

  • Запись, остановка, автоматические измерения и другие фишки – это еще не весь список, что умеет делать цифровой осциллограф
  • Габариты цифрового осциллографа намного меньше, чем аналогового
  • Потребление энергии меньше, чем у аналогового осциллографа
  • Жидкокристаллический дисплей, в отличие от кинескопного дисплея аналогового осциллографа

Минусы

  • Дороговизна
  • Дискретная прорисовка сигнала. Хотя дорогие модели ничуть не уступают аналоговым по прорисовке сигнала.

Где купить цифровой осциллограф

Естественно, на Алиэкспрессе, так как в наших интернет-магазинах их цена бывает завышена в два, а то и в три раза. Также очень хорошие отзывы об осциллографе Hantek, характеристики которого даже лучше, чем у моего OWON:

купить осциллограф
купить осциллограф

Посмотреть его можете на Алиэкпрессе по этой ссылке.

Ошибки при выборе и работе с осциллографом

Понимание, как пользоваться осциллографом, приходит только с практическим опытом работы, теоретических знаний недостаточно – нужно руками произвести все настройки, коммутацию и измерения. Цифровой прибор сильно облегчает процесс, но стоимость аппаратуры очень высока.

Важно! Не стоит приобретать старый советский прибор, т.к. погрешности измерений не дадут достоверных данных, откалибровать его уже не получится.

Обязательно необходимо соблюдать технику безопасности: напряжение на ЭЛТ, как на кинескопе телевизора, – убить не убьет, но покалечить может. Паспорт и руководство описывают, как работать с осциллографом, но здравый смысл никто не отменял: экспериментировать нужно осторожно.

Измеряем сдвиг фаз

Иногда бывает, что фазы напряжения и тока расходятся (при проходе через конденсаторы, индуктивность). С двухканальным O-scope возможно посмотреть уровень различий.

Измеряем сдвиг фаз

Сдвиг фаз покажет два процесса в движении, их положение с колебаниями. Измеряют не в ед. времени (горизонталь), а в долях промежутка сигнала (ед. угла). Одинаковому взаимному размещению сигналов соответствует такой же сдвиг, и он не зависит от периода и частоты. Поэтому измерения достовернее при максимальном растяжении периодов на мониторе.

Как проводятся измерения

Работа с осциллографом предусматривает проведение предварительной подготовки: выбор режима синхронизации, входа, шкалы измерений, затем можно приступать к измерениям.

Как измерить напряжение

После снятия с информационного входа данных с помощью регулировки синхронизации развертки получается устойчивое изображение, которое совмещается со шкалой на экране. Проводят несколько замеров, вычисляют среднее значение. Действующее значение выводят согласно шкалы измерений.

Как измерить частоту

Настроив картинку хорошего качества, на которой виден период изменения сигнала, совместив его начало с началом горизонтальной линейки и зная единицы шкалы измерений, можно вычислить частоту, которая обратно пропорциональна периоду.

Как определяется сдвиг фаз

Стабилизировав изображение с двумя сигналами (вот для чего необходим двухлучевой осциллограф), для удобства необходимо разнести значения амплитуд и совместить начала периодов, на экране будет виден сдвиг фаз. Для вычисления значения можно использовать формулу:

где:

  • а – расстояние в делениях между точками прохождения нулевой отметки осциллограмм,
  • b – период в делениях шкалы.

При наличии только одноканального прибора возможно определение сдвига фаз по фигурам Лиссажу, но это сложнее.

Сдвиг фазы между синусоидальными сигналами

Как выполняются измерения

Экран осциллографа поделён на небольшие клетки, которые называются делениями. В зависимости от прибора каждый квадрат будет равен определённому значению. Наиболее популярное обозначение: одно деление – 5 единиц. Также на некоторых приборах присутствует ручка для управления масштабом графика, чтобы пользователям было удобнее и точнее производить измерения.

Читайте также:  Как подключить 3 фазный электродвигатель к сети 220 вольт через конденсатор

Прежде чем начать измерение любого рода следует присоединить осциллограф к электрической цепи. Щуп подключается на любой из свободных каналов (если в приборе, больше чем 1 канал) или на генератор импульсов, при его наличии в устройстве. После подключения на дисплее аппарата появятся различные изображения сигналов.

Если сигнал получаемый прибором обрывистый, то проблема заключается в присоединении щупа. Некоторые из них оборудованы миниатюрными винтами, которые необходимо закрутить. Также в цифровых осциллографах решает проблему обрывистого сигнала фикция автоматического позиционирования.

Watch this video on YouTube
Для чего нужен осциллограф и как им выполнять измерения тока, напряжения, частоты и сдвига фаз

Измерение тока

При измерении тока цифровым осциллографом, следует узнать какой вид тока необходимо наблюдать. Осциллографы имеют два режима работы:

  • Direct Current («DC») для постоянного тока;
  • Alternating Current («АС») для переменного.

Постоянный ток измеряется при включённом режиме «Direct Current». Щупы аппарата следует подключить к блоку питания в прямом соответствии с полюсами. Чёрный крокодил присоединяется к минусу, красный — к плюсу.

На экране устройства появится прямая линия. Значение вертикальной оси будет соответствовать параметру постоянного напряжения. Силу тока можно вычислить согласно закону Ома (напряжение поделить на сопротивление).

Переменный ток представляет собой синусоиду, из-за того, что напряжение также переменно. Поэтому измерить его значение можно только в определённый промежуток времени. Параметр также вычисляется при помощи закона Ома.

Измерение напряжения

Чтобы измерить напряжение сигнала понадобится вертикальная ось координат линейного двухмерного графика. Из-за этого всё внимание будет уделено высоте осциллограммы. Поэтому перед началом наблюдения следует настроить экран более удобно для измерения.

Затем переводим аппарат в режим DC. Присоединяем щупы к цепи и наблюдаем результат. На дисплее аппарата появится прямая линия, значение которой будет соответствовать напряжению электрического сигнала.

Watch this video on YouTube
Для чего нужен осциллограф и как им выполнять измерения тока, напряжения, частоты и сдвига фаз

Измерение частоты

Прежде чем, понять, как измерить частоту электрического сигнала, следует узнать, что такое период, так как эти два понятия взаимосвязаны. Один период – это наименьший промежуток времени, через который амплитуда начинает повторяться.

Читайте также:  Что такое герконовый датчик и где он применяется?

Увидеть период на осциллографе легче при помощи горизонтальной оси координат времени. Нужно лишь заметить, через какой промежуток времени линейный график начинает повторять свой рисунок. Началом периода лучше считать точки соприкосновения с горизонтальной осью, а концом повторения этой же координаты.

Чтобы удобнее измерить период сигнала, скорость развёртки уменьшают. В таком случае погрешность измерения не так высока.

Частота — это значение обратно пропорционально анализируемому периоду. То есть, чтобы измерить значение, нужно одну секунду времени поделить на количество периодов, происходящих за этот промежуток. Полученная частота измеряется в Герцах, стандарт для России — 50 Гц.

Принцип функционирования

Общий принцип работы прибора прост. Он регистрирует любое изменение напряжения испытуемого сигнала и выводит его на дисплей. Со времён самописца, придуманного Андре Блондалем, где индуктивная катушка управляла колебаниями маятника, идея претерпела изменения. После изобретения электронно-лучевой трубки (ЭЛТ) прибор стал полноценным измерителем. Органы управления находятся на передней панели.

Как сделать осциллограф из компьютера своими руками — схема
Как сделать осциллограф из компьютера своими руками — схема
Как сделать осциллограф из своего компьютера
Как сделать осциллограф из своего компьютера
Устройство осциллографа, его настройка и сферы применения
Устройство осциллографа, его настройка и сферы применения
Как пользоваться осциллографом и для чего он нужен
Как пользоваться осциллографом
Как пользоваться осциллографом
Советы мастеров по выбору осциллографа
Советы мастеров по выбору осциллографа
Осциллограф омл-3м — характеристики, инструкция для начинающих
Осциллограф омл-3м — характеристики, инструкция для начинающих
Цифровой осциллограф для начинающих. ч1
Цифровой осциллограф для начинающих. ч1
Какой осциллограф выбрать для ремонта электроники
Какой осциллограф выбрать для ремонта электроники
Как пользоваться осциллографом
Как пользоваться осциллографом

Поданный на вход сигнал может иметь разную амплитуду. Расположенный на передней панели регулятор «В/дел», позволяет растягивать или уменьшать получаемую картинку по оси Y. Ручка «длительность» изменяет скорость движения луча по дисплею. Это частота развёртки.

К сведению. Луч постоянно перемещается слева на право, вертикальное отклонение ему задаёт импульс, приходящий на вход. В результате на дисплее получается синусоида или иные колебания.

С помощью частоты развёртки добиваются остановки картинки. Когда она близка или совпадает с частотой сигнала, то картинка замирает и становится статичной. Вот главный принцип работы прибора.

Области применения

Осциллограф предназначен для изучения динамических процессов. Чтобы пользоваться прибором правильно, следует не превышать конструкционные возможности. Ниже представлены примеры решения практических задач.

Наблюдение фигур Лиссажу

При одновременной подаче на входы осциллографа сигналов с приблизительно равными частотами на экране будут видны характерные изображения. Этот метод используют для настройки генератора по эталонному образцу.

Советуем изучить  Замена аккумуляторов в шуруповерте


Фигура Лиссажу на ЭЛТ аналогового прибора

Курсорные измерения

Для повышения точности измерений на экран выводят вспомогательные координатные полосы (курсоры). При хорошей оснащенности осциллограф индицирует отдельные показатели в цифровом виде.

Математические функции

Некоторые модели современных осциллографов (блоки для подключения к компьютеру) способны обрабатывать сигналы по сложному алгоритму. Необходимый вариант описывают соответствующей математической функцией: сложение, вычитание или др.

Захват строки телевизионного сигнала

В соответствии с названием такой режим предназначен для изучения телевизионного сигнала. Главная особенность – специальная синхронизация, позволяющая выводить на экран необходимое количество строк.

Устройство

Главный узел осциллографа — трубка как у старых телевизоров, электронно-лучевая, осуществляющая визуализацию величин, принимаемых входным делителем, от которого зависят рамки допустимых замеров. Происходит усиление, синхронизация с генератором развертки. Далее, исследуемая величина попадает на оконечный усиливающий узел, на ЭЛТ, затем происходит отображение его онлайн без каких-либо задержек.

Устройство

Устройство 2

цифровой осциллограф

Алгоритм, как работает цифровой осциллограф несколько иной: он сначала пропускает сигнал через преобразователь (аналого-цифровой), замеряя его несколько раз в сек. Затем происходит реконструкция и отображение на мониторе. Одновременно данные записываются буферной памятью, есть возможность будущей их обработки.

работа осциллографа

Электронный осциллограф

Работать с цифровым осциллографом удобнее, его преимущества — полная функциональность с дополнительными опциями в маленьком корпусе, простота настроек. Выбор осциллографа в современных условиях обычно осуществляется среди указанных видов. Отдельные аналоговые старые основательные советские экземпляры (дешевле в 4–5 раз) неплохи, но они габаритные, требуют больше навыков по настройке.

Немного теории

Слово «осциллограф» образовано от «осциллум» — колебание и «графо» — пишу. Отсюда и назначение этого измерительного прибора — отображать на экране кривые тока или напряжения в функции времени. Встречается и другое название этого прибора — осциллоскоп (от того же «осциллум» и «скопео» — смотрю) — прибор для наблюдения формы колебаний. И хотя второе название более точное, до сих пор в литературе бытует все же первое — осциллограф.

Основная деталь электронного осциллографа — электронно-лучевая трубка (рис. 1), напоминающая но форме телевизионный кинескоп, только значительно меньших габаритов. Экран трубки покрыт изнутри люминофором — веществом, способным светиться под «ударами» электронов. Чем больше поток электронов, тем ярче свечение той части экрана, куда они попадают.

Испускаются же электроны так называемой электронной пушкой, размещенной на противоположном от экрана конце трубки. Между пушкой и экраном размещены управляющие электроды — модулятор, регулирующий поток летящих к экрану электронов, два анода, создающих нужное ускорение пучка электронов и его фокусировку, и две пары пластин, с помощью которых электроны можно отклонять по горизонтальной ( X ) и вертикальной ( Y ) осям.

Экран электронно-лучевой трубки будет светиться лишь при подаче на ее электроды определенных напряжений. На нить накала обычно подают переменное напряжение, на управляющий электрод (модулятор) — постоянное отрицательной полярности по отношению к катоду, на аноды — положительное, причем на первом аноде (фокусирующем) напряжение значительно меньше, чем на втором (ускоряющем). На отклоняющие пластины подается как постоянное напряжение, позволяющее смещать пучок электронов в любую сторону относительно центра экрана, так и переменное, создающее линию развертки той или иной длины, а также «рисующее» на экране форму исследуемых колебаний.

Чтобы представить, как же получается форма колебаний на экране, изобразим условно экран трубки в виде окружности (хотя у трубки 6Л01И в ОМЛ-2М и ОМЛ-3М он прямоугольный) и поместим внутри ее отклоняющие пластины (рис. 2).

Если подвести к горизонтальным пластинам X 1 и Х 2 пилообразное напряжение, на экране появится светящаяся горизонтальная линия — ее называют линией развертки или просто разверткой. Длина ее зависит от амплитуды пилообразного напряжения.

Если теперь подать на другую пару пластин (вертикальных — Y 1 и Y 2 ), например, переменное напряжение синусоидальной формы, линия развертки в точности «изогнется» по форме колебаний и «нарисует» на экране изображение.

В случае равенства периодов синусоидального и пилообразного колебаний на экране будет изображение одной «синусоиды». При неравенстве же периодов на экране появится столько полных колебаний, сколько периодов их укладывается в периоде колебаний пилообразного напряжения развертки. В осциллографе есть регулировка частоты развертки, с помощью которой добиваются нужного числа наблюдаемых на экране колебаний исследуемого сигнала.

Как подключить импортный осциллограф

Нужно внимательно ознакомиться с руководством пользователя, подготовить рабочее место для прибора, качественно его заземлить.

Важно! Заземление гарантирует, что при работе на корпусе не будет опасного статического заряда, коснувшись которого рукой можно получить удар.

Далее нужно определить точки для снятия сигнала, нулевую магистраль, посредством щупа произвести их коммутацию с аттенюатором (при неизвестных уровнях сигнала выставить максимальную амплитуду). Включить прибор, дать ему прогреться, выставить необходимые режимы и произвести замеры. Снять показания, замеры повторить несколько раз.

Порядок проведения измерений

Настройка

Для начинающих пользователей обращение с осциллографом в первое время вызывает определённые трудности, поскольку у этого прибора имеется множество всевозможных регуляторов и настроек. Для того чтобы разобраться с функционалом измерительного прибора, следует сначала отстроить его, придерживаясь при этом следующих правил:

  • После включения прибора, прежде всего, следует убедиться в наличии на его экране горизонтальной полосы развёртки;

Важно! Если полоса плохо видна и сильно размыта, ручками «Фокусировка» и «Яркость» следует привести её к требуемому виду (она должна быть чёткой, тонкой и хорошо различимой на тёмном фоне).

  • При её отсутствии необходимо сначала увеличить яркость луча, а затем попытаться найти его след на экране, вращая ручки перемещения вправо и влево (вверх или вниз);
  • Если это не помогает, вращением ручек синхронизации («Уровень», «Стабильность») следует добиться появления устойчивого изображения;
  • После этого необходимо отстроить его по масштабной сетке (выставить его по центру), а затем прикоснуться к измерительному острию шнура пальцами и убедиться, что на нём появляются небольшие шумовые всплески.

На этом настройку прибора можно считать законченной.

Измерение

Для того чтобы получить на экране искомое изображение, сначала следует определиться с примерными значениями частоты и амплитуды действующего в цепи напряжения (если это возможно). После этого выполняются следующие операции.

Сначала ручки переключателей «Амплитуда» («Усиление») и «Длительность» выставляются в положение, соответствующее предполагаемому размаху и частоте измеряемого сигнала.

Так, если он имеет ожидаемую амплитуду в пределах единиц Вольта и частоту порядка одного МГц, носик ручки «Усиление» устанавливается напротив деления 1 Вольт (или чуть больше).

Одновременно с этим ручку развёртки устанавливают у отметки 1 Мкс, что соответствует одному мегагерцу (F=1/T = 1/{1/1000000 сек} = 1 МГц).

Дополнительная информация. Выставленные вручную значения амплитуды и частоты определяют «цену» одного деления имеющейся на экране графической разметки (по вертикали и горизонтали, соответственно). При амплитуде исследуемого сигнала 3 Вольта, например, на экране он будет занимать по вертикали 3 клетки.

В том случае, когда эти значения заранее неизвестны, при измерении может появиться «сплошной» сигнал, форму которого сразу определить не удаётся. Для устранения этой неопределённости следует сделать несколько переключений ручкой «Развёртка», после чего в определённом положении сигнал должен будет приобрести удобный для восприятия вид.

Это может быть синусоида, импульс или сложная, но хорошо различимая по форме кривая.

Измерение параметров сигнала

После того, как прибор настроен и откалиброван по разметочной сетке, с полученным изображением можно обращаться как с обычным графическим представлением сигнала. Это значит, что его можно изучать на предмет соответствия формы заданным параметрам (искажение синусоиды, например), а также измерять приблизительные значения его амплитуды и частоты.

Измерение параметров импульсного сигнала

В качестве примера возьмём уже рассмотренный ранее режим, когда предел измерений по уровню выбран 1 Вольт, а по частоте он соответствует 1 микросекунде. В этом случае амплитуда сигнала определяются следующим образом:

  • Сначала полученное изображение выставляется строго по центру графической сетки;
  • Потом регулятор «Усиление» переводится в крайне правое положение, соответствующее точному значению выбранного масштаба (1 Вольт);
  • Вслед за этим по шкале отмеряется количество клеток, которые занимает изображение сигнала, после чего оно умножается на цену одного деления.

Так, если изображение по вертикали заняло 3 клетки, то можно сказать, что амплитуда измеряемого сигнала равна трём вольтам.

Обратите внимание! Такие же манипуляции проделываются и с частотой измеряемого синусоидального напряжения, но только в этом случае за масштаб отсчёта по горизонтали берутся показания его развёртки (1 МГц).

При измерении частоты изображение приводится к удобному для восприятия виду, так, чтобы в одной клетке масштаба уместилось заданное количество полных колебаний (при выведенной в правое положение ручке «Развёртка»). Если таких периодов насчитывается три штуки, например, частота сигнала равна трём мегагерцам.

В заключение отметим, что с помощью двухлучевого осциллографа можно определиться с таким показателем, как фаза сигнала, измеренная по отношению ко второму колебательному процессу. Для этого достаточно совместить начальные точки обоих исследуемых процессов и измерить отставание одного из них по горизонтальной шкале разметки.

Сдвиг фаз

Это интересно: Кабель под землей или по воздуху — как лучше и надёжнее

Соединительные шнуры и входы

Как пользоваться сварочным аппаратом

Работа с осциллографом невозможна без специальных соединительных шнуров, используемых для снятия сигнала с заданной точки контролируемой электронной схемы. Каждый из них необходим для подключения к тому или иному входному гнезду, имеющему определённое функциональное назначение. В комплекте современного осциллографа может быть несколько таких соединителей, рассчитанных на работу с различными схемами. С ответной стороны они подключаются к специальному коаксиальному гнезду, расположенному в нижней части панели управления.

Дополнительная информация. В различных моделях электронных устройств усилитель и развёртка способны обрабатывать сигналы с частотами, начиная от единицы и кончая сотнями мегагерц.

Для их обработки в любом случае потребуются ВЧ шнуры (их иногда ещё называют «концами»). Исключение составляют лишь низкочастотные приборы (НЧ), предназначенные для обработки сигналов с частотами до 1 МГц, в которых могут использоваться простые провода (без экранной оплётки).

Понятно, что двухлучевой осциллограф должен содержать в своём комплекте пару таких шнуров, подсоединяемых к двум различным гнёздам (они обозначаются как «Вход 1» и «Вход 2»). Иногда для внешней синхронизации развёртки к прибору может прикладываться ещё один «конец», подключаемый к входному разъёму под обозначением «Синхронизация».

Классификация и виды

Различают два основных вида осциллографов:

  • аналоговые — аппараты для измерения средних сигналов;
  • цифровые — приборы преобразовывают получаемое значение измерений в «цифровой» формат для дальнейшей передачи информации.

По принципу действия существуют следующая классификация:

  1. Универсальные модели.
  2. Специальное оборудование.

Наиболее популярными являются универсальные устройства. Эти осциллографы используют для анализа различных видов сигналов:

  • гармонических;
  • одиночных импульсов;
  • импульсных пачек.

Универсальные приборы предназначены для разнообразных электрических устройств. Они позволяют измерять сигналы в диапазоне от нескольких наносекунд. Погрешность измерений составляет 6-8%.

Универсальные осциллографы делятся на два основных вида:

  • моноблочные — имеют общую специализацию измерений;
  • со сменными блоками — подстраиваются под конкретную ситуацию и тип прибора.

Специальные устройства разрабатываются под определённый вид электрической техники. Так существуют осциллографы для радиосигнала, телевизионного вещания или цифровой техники.

Универсальные и специальные устройства делятся на:

  • скоростные – применяются в быстродействующих приборах;
  • запоминающие — аппараты, сохраняющие и воспроизводящие ранее сделанные показатели.

При выборе устройства следует внимательно изучить классификации и виды, чтобы приобрести прибор под конкретную ситуацию.

Back To Top