Как сделать блок питания на 12 вольт своими руками — примеры схем. Как сделать импульсный блок питания своими руками – 3 лучшие схемы

Схема блока питания на 12 вольт: поэтапная инструкция для самостоятельного изготовления

Схема блока питания на 12 вольт: поэтапная инструкция для самостоятельного изготовления

Виды блоков питания

На сегодняшний день широкое распространение получили импульсные источники напряжения. Перед традиционными трансформаторными схемами они имеют значительное преимущество в энергоэффективности и в массогабаритных показателях. Считается, что при токах нагрузки более 5 ампер они имеют неоспоримые преференции. Но им присущи и недостатки – например, генерация ВЧ-помех в питающую сеть и в нагрузку. А главное препятствие для домашней сборки – сложность схем и необходимость специальных навыков для изготовления намоточных деталей. Поэтому домашнему мастеру средней квалификации лучше заняться изготовлением блока питания по обычному принципу с сетевым понижающим трансформатором.

Где используется источник напряжения

Область применения такого БП в домашнем хозяйстве широка:

  • питание низковольтных светильников;
  • зарядка аккумуляторных батарей;
  • питание звуковоспроизводящих устройств.

А также многие другие цели, для которых требуется постоянное напряжение 12 вольт.

Схема импульсного блока питания на 12 В

Преимущество этой схемы в том, что эта схема очень популярная в своем роде и ее повторяют многие радиолюбители в качестве своего первого импульсного источника питания и КПД а разы больше не говоря уже и размерах. Схема питается от сетевого напряжения 220 вольт по входу стоит фильтр который состоит из дросселя и двух пленочных конденсаторов рассчитанных на напряжение не менее 250 – 300 Вольт емкостью от 0,1 до 0,33 мкФ их можно взять из компьютерного блока питания.
В моем случае фильтра нет, но поставить желательно. Далее напряжение поступает на диодный мост рассчитанный на обратное напряжение не менее 400 Вольт и током не менее 1 Ампера. Можно и поставить готовую диодную сборку. Дальше по схеме стоит сглаживающий конденсатор с рабочим напряжением 400 В, поскольку амплитудное значение сетевого напряжение составляет в районе 300 В. Емкость данного конденсатора подбирается следующим образом, 1 мкФ на 1 Ватт мощности, так как я не собираюсь выкачивать из этого блока большие токи, то в моем случае стоит конденсатор на 47 мкФ, хотя из такой схемы можно и выкачивать сотни ватт. Питание микросхемы берется с переменки, здесь организован источник питания резистор R1 который обеспечивает гашение тока, желательно ставить помощнее не менее двух ватт так как осуществляется его нагрев, затем напряжение выпрямляется всего одним диодом и поступает на сглаживающий конденсатор а затем на микросхему. 1 вывод микросхемы плюс питания и 4 вывод это минус питания.
Можно и собрать отдельный источник питания для нее и подать согласно полярности 15 В. В нашем случае микросхема работает на частоте 47 – 48 кГц для такой частоты организована RC цепочка состоящая из резистора R2 15 ком и пленочного или керамического конденсатора на 1 нФ. При таком раскладе деталей микросхема будет работать правильно и вырабатывать прямоугольные импульсы на своих выходах которые поступают на затворы мощных полевых ключей через резисторы R3 R4 номиналы их могут отклоняться в пределах от 10 до 40 Ом. Транзисторы необходимо ставить N канальные, в моем случае стоят IRF840 с рабочим напряжением сток исток 500 В и максимальным током стока при температуре 25 градусов 8 А и максимальной рассеиваемой мощностью 125 Ватт. Далее по схеме стоит импульсный трансформатор, после него идет полноценный выпрямитель из четырех диодов марки HER308, обычные диоды тут не подойдут так как они не смогут работать на высоких частотах, поэтому ставим ультрабыстрые диоды и после моста напряжение уже поступает на выходной конденсатор 35 Вольт 1000 мкФ, можно и 470 мкФ особо больших емкостей в импульсных блоках питания не требуется.
Вернемся к трансформатору, его можно найти на платах компьютерных блоков питания, определить тут его не сложно на фото видно самый большой вот он то нам и нужен. Чтобы перемотать такой трансформатор необходимо прослабить клей, которым склеены половинки феррита, для этого берем паяльник или паяльный фен и потихоньку прогреваем трансформатор, можно опустить в кипяток на несколько минут и аккуратно разъединяем половинки сердечника. Сматываем все базовые обмотки, наматывать будем свои. Из расчета того что мне на выходе нужно получить напряжение в районе 12-14 Вольт, первичная обмотка трансформатора содержит 47 витков проводом 0,6 мм в две жилы, делаем изоляцию между намоткой обычным скотчем, вторичная обмотка содержит 4 витка того же провода в 7 жил. ВАЖНО производить намотку в одну сторону, каждый слой изолировать скотчем, отмечая начало и конец обмоток иначе ни чего работать не будет, а если и будет тогда блок не сможет отдать всю мощность.

Схема трансформаторного БП

Как сделать блок питания на 12 вольт своими руками — примеры схем
Как сделать блок питания на 12 вольт своими руками — примеры схем
Принципиальная схема источника питания.

Схема блока питания на 12 вольт, работающего от сети 220 В, состоит из следующих узлов:

  1. Понижающий трансформатор. Состоит из железа, первичной и вторичной (их может быть несколько) обмоток. Не вдаваясь глубоко в принцип действия, надо отметить, что выходное напряжение зависит от соотношения витков первичной (n1) и вторичной (n2) обмоток. Для получения 12 вольт надо, чтобы вторичная обмотка содержала в 220/12=18,3 раза меньше витков, чем первичная.
  2. Выпрямитель. Чаще всего выполняется в виде двухполупериодной схемы (диодного моста). Преобразует переменное напряжение в пульсирующее. Ток за период дважды проходит через нагрузку в одном направлении.Как сделать блок питания на 12 вольт своими руками — примеры схем
    Как сделать блок питания на 12 вольт своими руками — примеры схем
    Работа двухполупериодного выпрямителя.
  3. Фильтр. Преобразует пульсирующее напряжение в постоянное. Он заряжается в моменты подачи напряжения, и разряжается в паузах. Состоит из оксидного конденсатора большой емкости, параллельно с которым часто включают керамический конденсатор емкостью около 1 мкФ. Для понимания необходимости этого дополнительного элемента надо вспомнить, что оксидный конденсатор устроен в виде полос фольги, свернутых в рулон. Этот рулон имеет паразитную индуктивность, которая заметно ухудшает качество фильтрации высокочастотных помех. Для этого включается дополнительный конденсатор замыкания ВЧ-импульсов.Как сделать блок питания на 12 вольт своими руками — примеры схем
    Как сделать блок питания на 12 вольт своими руками — примеры схем
    Эквивалентная схема фильтра с оксидным и дополнительным конденсаторами.
  4. Стабилизатор. Может отсутствовать. Схемы простых, но эффективных узлов рассмотрены ниже.

В последующих разделах рассмотрен порядок выбора и расчета каждого элемента источника постоянного напряжения на 12 вольт.

Выбор трансформатора

Для получения подходящего трансформатора возможны два пути. Самостоятельное изготовление понижающего блока и подбор подходящего в заводском исполнении. В любом случае надо иметь в виду:

  • на выходе понижающей обмотки трансформатора при замере напряжения вольтметр покажет эффективное напряжение (в 1,4 раза меньше амплитудного);
  • на фильтрующем конденсаторе без нагрузки постоянное напряжение будет примерно равным амплитудному (говорят, что на конденсаторе напряжение «поднимается» в 1,4 раза);
  • если стабилизатор отсутствует, то под нагрузкой напряжение на емкости просядет в зависимости от тока;
  • для работы стабилизатора нужно определенное превышение входного напряжения над выходным, их соотношение ограничивает КПД блока питания в целом.

Из двух последних пунктов следует вывод, что для нормальной работы БП напряжение трансформатора должно превышать 12 В.

Импульсный блок питания на TL494 своими руками — схема и подробная инструкция по монтажу

Импульсный блок питания на TL494 крупным планом
Корпус этого самодельного импульсного блока питания состоит из двух частей — основа Kradex Z4A, а так же вентилятор (кулер), который можно увидеть на фото. Он является как бы продолжением корпуса, но обо всем по порядку.
Схематическое изображение импульсного блока питания на TL494
Схема импульсного блока питания на TL494
Что касается необходимых деталей, то нам понадобятся:

  • ШИМ контроллер (IC1) — TL494.
  • Операционный усилитель (IC2) — LM324.
  • 2 линейных регулятора (VR1, VR2) — L7805AB и LM7905.
  • 4 биполярных транзистора T1, T2 — C945 и T3, T4 — MJE13009.
  • 2 диодных моста — VDS2 (MB105) и VDS1 (GBU1506).
  • 5 выпрямительных диодов (D3–D5, D8, D9) — 1N4148.
  • 2 выпрямительных диода (D6, D7) — FR107.
  • 2 выпрямительных диода (D10, D11) — FR207.
  • 2 выпрямительных диода (D12, D13) — FR104.
  • Диод Шоттки (D15) — F20C20.
  • 5 дросселей — L1 (100 мкГн), L5 на желтом кольце (100 мкГн), L3, L4 (10 мкГн), L6 (8 мкГн).
  • Синфазный дроссель (L2) — 29 мГн.
  • 2 импульсных трансформатора — Tr1 (EE16) и Tr2 (EE28–EE33, ER35).
  • Трансформатор (Tr3) — BV EI 382 1189.
  • Предохранитель (F1) — 5А.
  • Терморезистор (NTC1) — 5.1 Ом.
  • Варистор (VDR1) — 250 В.
  • Резисторы — R1, R9, R12, R14 (2.2 кОм); R2, R4, R5, R15, R16, R21 (4.7 кОм); R3 (5.6 кОм); R6, R7 (510 кОм); R8 (1 Мом); R13 (1.5 кОм); R17, R24 (22 кОм); R18 (1 кОм);
  • R19, R20 (22 Ом); R22, R23 (1.8 кОм); R27, R28 (2.2 Ом); R29, R30 (470 кОм, 1–2 Вт); R31 (100 Ом, 1–2 Вт); R32, R33 (15 Ом); R34 (1 кОм, 1–2 Вт).
  • Переменные резисторы (R10, R11) — 10 кОм, можно использовать 3 или 4.
  • Резисторы (R25, R26) — 0.1 Ом; шунты, мощность зависит от выходной мощности БП.
  • Конденсаторы — C1, C8, C27, C28, C30, C31 (0.1 мкФ); C3 (1 нФ, пленочный); C4–C7 (0.01 мкФ); C10 (0.47 мкФ, 275 В, X); C12 (0.1 мкФ, 275 В, X); C13, C14, C19 (0.01 мкФ, 2 кВ, Y); C20 (1 мкФ, 250 В, пленочный); C21 (2.2 нФ, 1 кВ); C23, C24 (3.3 нФ).
  • Электролитические конденсаторы — C2, C9, C22, C25, C26, C34, C35 (47 мкФ); C11 (1 мкФ); C15, C16 (2.2 мкФ); C17, C18 (470 мкФ, 200 В); C29, C32, C33 (1000 мкФ, 35 В).
  • 2 светодиода — D1 (зеленый, 5 мм) и D2 (красный, 5 мм), либо просто диоды, если не нужна индикация.

Из конструктивных элементов нужны будут:

  1. Корпус Z4A.
  2. Выключатель — 250 В, 6 А.
  3. Держатель для предохранителя.
  4. Розетка для подключения к сети 220 В.
  5. Вилка для подключения к сети 220 В.
  6. Разъём для выходного напряжения.
  7. Вентилятор 12 В.
  8. Вольтметр.
  9. Амперметр.

Как видите, схема работает на микросхеме TL494. Существует много аналогов, но лучше использовать оригинальные микросхемы. Стоят они не так уж и дорого, а работают надежно, в отличие от китайских подделок.
Можно также разобрать несколько старых БП от компьютеров и насобирать необходимых деталей оттуда, но лучше по возможности использовать новые детали и микросхемы — это повысит шанс на успех.

  • Смотрите также схему блока питания 12В 10А

По причине того, что выходной мощности встроенных ключевых элементов TL494 недостаточно, чтобы управлять мощными транзисторами, работающими на основной импульсный трансформатор Tr2, строится схема управления силовыми транзисторами T3 и T4 с применением управляющего трансформатора Tr1. Данный трансформатор управления можно использовать от старого БП компьютера без внесения изменений в состав обмоток. Трансформатор управления Tr1 раскачивается транзисторами T1 и T2.
Как выглядит трансформатор управления Tr1
Сигналы управляющего трансформатора через диоды D8 и D9 поступают на базы силовых транзисторов. Транзисторы T3 и T4 используются биполярные марки MJE13009. Можно использовать транзисторы на меньший ток — MJE13007, но здесь все же лучше оставить на больший ток, чтобы повысить надежность и мощность схемы, хотя от короткого замыкания в высоковольтных цепях схемы это не спасет.
Далее эти транзисторы раскачивают трансформатор Tr2, который преобразует выпрямленное напряжение 310 Вольт от диодного моста VDS1 в необходимое нам (в данном случае 30–31 вольт). Данные по перемотке или намотке с нуля трансформатора обсудим чуть позже. Выходное напряжение снимается с вторичных обмоток этого трансформатора, к которым подключается выпрямитель и ряд фильтров, чтобы напряжение было максимально без пульсаций.
Выпрямитель необходимо использовать на диодах Шоттки, чтобы минимизировать потери при выпрямлении и исключить большой нагрев этого элемента, по схеме используется сдвоенный диод Шоттки D15. Здесь также чем больше допустимый ток диодов, тем лучше. При неосторожности при первых запусках схемы большая вероятность испортить эти диоды и силовые транзисторы T3 и T4. В выходных фильтрах схемы стоит использовать электролитические конденсаторы с низким ЭПС (Low ESR). Дроссели L5 и L6 в нашем случае были использованы от неисправных блоков питания компьютеров. L6 использован без изменения обмотки, он представляет собой цилиндр с десятком витков толстого медного провода. L5 необходимо перемотать, поскольку в компьютере используется несколько уровней напряжения — нам нужно только одно напряжение, которое мы будем регулировать.
Обмотка дросселя
L5 представляет собой кольцо желтого цвета (не всякое кольцо пойдет, так как могут применяться ферриты с разными характеристиками, нам нужно именно желтого цвета). На это кольцо нужно намотать примерно 50 витков медного провода диаметром 1,5 мм. Резистор R34 гасящий — он разряжает конденсаторы, чтобы при регулировке не возникло ситуации долгого ожидания уменьшения напряжения при повороте ручки регулировки.
Наиболее подверженные нагреву элементы T3 и T4, а также D15 устанавливаются на радиаторы. В данной конструкции они были также взяты от старых блоков и отформатированы (отрезаны и изогнуты под размеры корпуса и печатной платы).
Элементы T3, T4 и D15
Схема является импульсной и может вносить в бытовую сеть собственные помехи, поэтому необходимо использовать синфазный дроссель L2. Чтобы отфильтровывать уже имеющиеся помехи сети используются фильтры с применением дросселей L3 и L4. Терморезистор NTC1 исключит скачок тока в момент включения схемы в розетку, старт схемы получится более мягкий.

  • Смотрите также, как сделать мощный регулируемый блок питания 0–28 Вольт

Чтобы управлять напряжением и током, а также для работы микросхемы TL494 необходимо напряжение более низкого уровня, чем 310 вольт, поэтому используется отдельная схема питания. Построена она на малогабаритном трансформаторе Tr3 BV EI 382 1189.
Со вторичной обмотки напряжение выпрямляется и сглаживается конденсатором — просто и сердито. Таким образом, получаем 12 Вольт, необходимые для управляющей части схемы блока питания. Далее 12 Вольт стабилизируются до 5 вольт при помощи микросхемы линейного стабилизатора 7805 — это напряжение используется для схемы индикации напряжения и тока.
Также искусственно создается напряжение -5 Вольт для питания операционного усилителя схемы индикации напряжения и тока. В принципе можно использовать любую доступную схему вольтметра и амперметра для данного импульсного блока питания и при отсутствии необходимости данный каскад стабилизации напряжения можно исключить. Как правило, используются схемы измерения и индикации, построенные на микроконтроллерах, которым необходимо питания порядка 3,3–5 Вольта. Подключение амперметра и вольтметра указано на схеме.
Провода внутри импульсного блока питания
На фото печатная плата с микроконтроллером. Амперметр и вольтметр к панели прикреплены на болтики, которые ввинчиваются в гайки, надежно приклеенные к пластмассе суперклеем. Данный индикатор имеет ограничение по измерению тока до 9,99 А, что явно маловато для данного блока питания. Кроме как функций индикации модуль измерения тока и напряжения больше никак не задействован относительно основной платы устройства. Функционально подойдет любой измерительный модуль на замену.
Схема регулировки напряжения и тока построена на четырех операционных усилителях (используется LM324 — 4 операционных усилителя в одном корпусе). Для питания этой микросхемы стоит использовать фильтр на элементах L1 и C1, C2. Настройка схемы заключается в подборе элементов, помеченных звездочкой для задания диапазонов регулирования. Схема регулировки собрана на отдельной печатной плате. Кроме того, для более плавной регулировки по току можно использовать несколько переменных резисторов соединенных соответствующим образом.
Для задания частоты преобразователя необходимо подобрать номинал конденсатора C3 и номинал резистора R3. На схеме указана небольшая табличка с расчетными данными. Слишком большая частота может увеличить потери на силовых транзисторах при переключении, поэтому слишком увлекаться не стоит, оптимально, на мой взгляд, использовать частоту 70–80 кГц, а то и меньше.
Теперь о параметрах намотки или перемотки трансформатора Tr2. Основу я также использовал от старых блоков питания компьютера. Если большой ток и большое напряжение вам не нужны, то можно такой трансформатор не перематывать, а использовать готовый, соединив обмотки соответствующим образом. Однако если необходим больший ток и напряжение, то трансформатор необходимо перемотать, чтобы получить более лучший результат.
Прежде всего придется разобрать сердечник, который у нас имеется. Это самый ответственный момент, так как ферриты достаточно хрупкие, а ломать их не стоит, иначе все на мусор. Итак, чтобы разобрать сердечник, его необходимо нагреть, поскольку для склеивания половинок обычно изготовитель использует эпоксидную смолу, которая при нагреве размягчается. Открытые источники огня использовать не стоит. Хорошо подойдет электронагревательное оборудование, в бытовых условиях – это, например, электроплита.
При нагреве аккуратно разъединяем половинки сердечника. После остывания снимаем все родные обмотки. Теперь нужно рассчитать необходимое количество витков первичной и вторичной обмоток трансформатора. Для этого можно использовать программу ExcellentIT (5000), в которой задаем необходимые нам параметры преобразователя и получаем расчет количества витков относительно используемого сердечника.
Далее после намотки сердечник трансформатора необходимо обратно склеить, желательно также использовать высокопрочный клей или эпоксидную смолу. При покупке нового сердечника потребность в склейке может отсутствовать, так как часто половинки сердечника стягиваются металлическими скобами и болтиками. Обмотки необходимо наматывать плотно, чтобы исключить акустический шум при работе устройства. По желанию обмотки можно заливать какими-нибудь парафинами.
Печатные платы проектировались для корпуса Z4A. Он подвергается небольшим доработкам, чтобы обеспечить циркуляцию воздуха для охлаждения. Для этого по бокам и сзади сверлится несколько отверстий, а сверху прорезаем отверстие для вентилятора.
Вентилятор для импульсного блока питания
Вентилятор дует вниз, лишний воздух уходит через отверстия. Можно вентилятор расположить и наоборот, чтобы он высасывал воздух из корпуса. По факту охлаждение вентилятором требуется нечасто, к тому же даже при больших нагрузках элементы схемы сильно не греются.
Также подготавливаются лицевые панели. Индикаторы напряжения и тока используются с применением семисегментных индикаторов, а в качестве светофильтра для этих индикаторов используется металлизированная антистатическая пленка, наподобие той, в которую упаковывают радиоэлементы с пометкой чувствительности к электростатике.
Можно также использовать полупрозрачную пленку, которую клеят на оконные стекла, либо тонирующую пленку для автомобилей. Набор элементов на лицевой панели спереди и сзади можно компоновать по любому вкусу. В нашем случае сзади разъем для подключения к розетке, отсек предохранителя и выключатель. Спереди — индикаторы тока и напряжения, светодиоды индикации стабилизации тока (красный) и стабилизации напряжения (зеленый), ручки переменных резисторов для регулировки тока и напряжения, а также быстрозажимной разъем, к которому подключено выходное напряжение.
Лицевая панель импульсного блока питания
При правильной сборке блок питания нуждается только в подстройке диапазонов регулирования.
Защита по току (стабилизация) работает следующим образом: при превышении установленного тока на микросхему TL494 подается сигнал о снижении напряжения — чем меньше напряжение, тем меньше ток. При этом на лицевой панели загорается красный светодиод, сигнализирующий о превышении установленного тока, либо о коротком замыкании. В нормальном режиме стабилизации напряжения горит зеленый светодиод.
Основные характеристики импульсного блока питания зависят в основном от применяемой элементной базы, в данном варианте они следующие:

  1. Входное напряжение — 220 вольт переменного тока.
  2. Выходное напряжение — от 0 до 30 вольт постоянного тока.
  3. Выходной ток составляет более 15 А (фактически тестированное значение).
  4. Режим стабилизации напряжения.
  5. Режим стабилизации тока (защита от короткого замыкания).
  6. Индикация обоих режимов светодиодами.
  7. Малые габариты и вес при большой мощности.
  8. Регулировка ограничения тока и напряжения.

Подводя итог, можно отметить, что данный импульсный блок питания получился достаточно качественный и мощный. Это позволяет использовать данный вариант блока питания как для тестирования каких-то своих схем, так и вплоть до зарядки автомобильных аккумуляторов.
Стоит отметить также то, что емкости на выходе стоят достаточно большие, поэтому коротких замыканий лучше не допускать, так как разряд конденсаторов с большой вероятностью может вывести схему из строя (ту, к которой подключаемся), однако без этой емкости выходное напряжение будет хуже — возрастут пульсации. Это особенность именно импульсного блока, в аналоговых БП выходная емкость, как правило, не превышает 10 мкФ в силу своей схемотехники. Таким образом, получаем универсальный лабораторный импульсный блок питания способный работать в широком диапазоне нагрузок практически от нуля до десятков Ампер и Вольт. Блок питания прекрасно зарекомендовал себя как при питании небольших схем при тестировании (но тут защита от КЗ поможет мало из-за большой выходной емкости) с потреблением в миллиамперы, так и в применении в ситуациях, когда необходима большая выходная.
Прилагаем также печатные платы (вольтметр и амперметр сюда не входят, поскольку можно применять абсолютно любые).
Файлы для скачивания: pechatnaya-plata-dlya-impulsnogo-bloka-pitaniya.rar
Видео о тестировании данного блока питания:

Сборка фильтрационных блоков

Перед тем, как подключить блок питания 12 вольт, рекомендуется установить специальные фильтры, которые помогут работе подключённых к устройству бытовых приборов. Чтобы подпитывалась бытовая техника, обычно применяется LC-цепочка. Там, где выходит из устройства выпрямитель со  значением плюс, необходимо подключение дросселя. Через него должно осуществляться прохождение электрического тока.

Простейший блок питания на 12 вольт своими руками. как самому быстро спаять бп на 12 в

Соединение второго вывода идёт к общему электрическому проводу со значением минус. Электролитический конденсатор способствует стабилизации электрического тока. Как же это происходит? Этот вопрос мы рассмотрим немного подробнее.

Простейший блок питания на 12 вольт своими руками. как самому быстро спаять бп на 12 в

Самостоятельная намотка трансформатора

Полный расчет и изготовление самодельного силового трансформатора сложны, трудоемки, требуют инструментов и навыков. Поэтому будет рассмотрен упрощенный путь – подбор подходящего по железу блока и переделка его на 12 В.

Если есть готовый трансформатор, но нет схемы его подключения, надо вызвонить тестером его обмотки. Обмотка с самым большим сопротивлением скорее всего будет сетевой. Остальные обмотки надо удалить.

Далее надо измерить толщину набора железа b и ширину центральной пластины a и перемножить их. Получится площадь сечения сердечника S=a*b (в кв.см.). Она определяет мощность трансформатора P=Как сделать блок питания на 12 вольт своими руками — примеры схем
Как сделать блок питания на 12 вольт своими руками — примеры схем
. Дальше вычисляется максимальный ток в амперах, который можно снять с обмотки с напряжением 12 вольт: I=P/12.

Определение площади сердечника.
Определение площади сердечника.
Определение площади сердечника.

Дальше вычисляется число витков на вольт по формуле n=50/S. Для 12 вольт надо намотать 12*n витков с запасом около 20% на потери в меди и на стабилизаторе. А если его нет, то на падение напряжения под нагрузкой. И последним шагом выбирается сечение провода намотки по графику для плотности тока 2-3 ма/кв.мм.

Выбор медного провода.
Выбор медного провода.
Выбор медного провода.

Например, имеется трансформатор с первичной обмоткой на 220 В с набором железа толщиной 3,5 см и шириной среднего язычка 2,5 см. Значит, S=2,5*3,5=8,75 и мощность трансформатора  Как сделать блок питания на 12 вольт своими руками — примеры схем
Как сделать блок питания на 12 вольт своими руками — примеры схем
=3 Вт (приблизительно). Тогда максимально возможный ток при 12 вольтах I=P/U=3/12=0,25 А. Для намотки можно выбрать провод диаметром 0,35..0,4 кв.мм. На 1 вольт приходится 50/8,75=5,7 витков, надо намотать 12*5,7=33 витка. С учетом запаса – около 40 витков.

Подбор готового трансформатора

Если есть готовый трансформатор с подходящей по току и напряжению вторичной обмоткой, можно попробовать подобрать готовый. Например, в серии ТПП есть подходящие изделия с напряжением вторичных обмоток, близким к 12 вольтам.

Трансформатор Обозначение выводов вторичной обмотки Напряжение, В Допустимый ток, А
ТПП48 11-12, 13-14, 15-16, 17-18 13,8 0,27
ТПП209 11-12, 13-15 11,5 0,0236
ТПП216 11-12, 13-14, 15-16, 17-18 11,5 0,072

Плюс этого решения – минимальная трудоемкость и надежность заводского исполнения. Минус – трансформатор содержит и другие обмотки, габаритная мощность рассчитана и на их нагрузку. Поэтому в массогабаритных показателях такой трансформатор будет проигрывать.

Выбор диодов и изготовление выпрямителя

Диоды в выпрямитель выбираются по трем параметрам:

  • наибольшее допустимое прямое напряжение;
  • наибольшее обратное напряжение;
  • наибольший рабочий ток.

По первым двум параметрам для работы в 12-вольтовой схеме подойдут 90 процентов доступных полупроводниковых приборов, выбор в основном делается по предельному длительно допустимому току. От этого параметра также зависит исполнение корпуса диода и способ изготовления выпрямителя.

Если ток нагрузки не будет превышать 1 А, можно применить зарубежные и отечественные одноамперные диоды:

  • 1N4001-1N4007;
  • HER101-HER108;
  • КД258 (“капелька”);
  • КД212 и другие.

На меньшие токи (до 0,3 А) рассчитаны приборы КД105 (КД106). Все перечисленные диоды можно монтировать как вертикально, так и горизонтально на печатную или монтажную плату, или просто на штырьки. Радиаторов им не нужно.

Как сделать блок питания на 12 вольт своими руками — примеры схем
Как сделать блок питания на 12 вольт своими руками — примеры схем
Диодный мост из маломощных элементов.

Если нужны большие рабочие токи, то надо применять другие диоды (КД213, КД202, КД203 и т.д.). Эти приборы рассчитаны для эксплуатации на теплоотводящих радиаторах, без них они выдержат не более 10% от максимального паспортного тока. Поэтому надо подобрать готовые теплоотводы или сделать их самостоятельно из меди или алюминия.

Как сделать блок питания на 12 вольт своими руками — примеры схем
Как сделать блок питания на 12 вольт своими руками — примеры схем
Другая конструкция диодного моста.

Также удобно использовать готовые мостовые диодные сборки КЦ405, КВРС или подобные. Их не надо собирать – достаточно подать на соответствующие выводы переменное напряжение и снять постоянное.

Сборка КВРС3510.
Сборка КВРС3510.
Сборка КВРС3510.

Емкость конденсатора

Емкость конденсатора зависит от нагрузки и от пульсаций, которые она допускает. Для точного расчета емкости существуют формулы и онлайн-калькуляторы, которые можно найти в интернете. Для практики можно ориентироваться на цифры:

  • при малых токах нагрузки (десятки миллиампер) емкость должна быть 100..200 мкФ;
  • при токах до 500 мА нужен конденсатор 470..560 мкФ;
  • до 1 А – 1000..1500 мкФ.

Для больших токов емкость увеличивается пропорционально. Общий же подход – чем больше конденсатор, тем лучше. Увеличивать его емкость можно до любых пределов, ограничиваясь лишь габаритами и стоимостью. По напряжению надо брать конденсатор с серьезным запасом. Так, для 12-вольтового выпрямителя лучше взять элемент на 25 вольт, чем на 16.

Эти рассуждения верны для нестабилизированных источников. Для БП со стабилизатором емкости можно уменьшать в разы.

Как получить бесперебойное питание?

Блок питания достаточно подключить параллельно аккумуляторной батарее, чтобы при выключении электричества все устройства продолжили работать в нормальном режиме. При подключенной сети блок питания производит зарядку батареи, принцип схож с работой электроснабжения автомобиля. А когда бесперебойный блок питания 12В отключаете от сети, происходит подача напряжения на всю аппаратуру от аккумулятора.

простой блок питания 12в

Но бывают случаи, когда необходимо на выходе получить сетевое напряжение 220 Вольт, например, для питания персональных компьютеров. В этом случае потребуется внедрение в схему инвертора – устройства, которое преобразует постоянное напряжение 12 Вольт в переменное 220. Схема оказывается сложнее, нежели у простого блока питания, но собрать его можно.

Стабилизация выходного напряжения

Стабилизатор на выходе блока питания нужен не всегда. Так, если предполагается использование БП совместно со звуковоспроизводящей аппаратурой, то на выходе надо иметь стабильное напряжение. А если нагрузкой служит нагревательный элемент – стабилизатор явно излишен. Для питания светодиодной ленты можно обойтись без самого сложного модуля БП, но с другой стороны стабильное напряжение обеспечивает независимость яркости свечения при перепадах в сети и продлевает срок службы LED-светильника.

Если решение об установке стабилизатора принято, то проще всего собрать его на специализированной микросхеме LM7812 (КР142ЕН5А). Схема включения проста и не требует наладки.

Стабилизатор на 7812.
Стабилизатор на 7812.
Стабилизатор на 7812.

На вход такого стабилизатора можно подавать напряжение от 15 до 35 вольт. На входе должен быть установлен конденсатор С1 емкостью не менее 0,33 мкФ, на выходе не менее 0,1 мкФ. В качестве С1 обычно выступает конденсатор блока фильтров, если длина соединительных проводов не превышает 7 см. Если такую длину выдержать не удается, то потребуется установка отдельного элемента.

Микросхема 7812 имеет защиту от перегрева и короткого замыкания. Но она не любит переполюсовки на входе и подачи внешнего напряжения на выход – время ее в жизни в таких ситуациях исчисляется секундами.

Важно! Для тока нагрузки свыше 100 мА установка интегрального стабилизатора на теплоотводящий радиатор обязательна!

Увеличение выходного тока стабилизатора

Приведенная схема позволяет нагружать стабилизатор током до 1,5 А. Если этого недостаточно, можно умощнить узел дополнительным транзистором.

Схема с транзистором структуры n-p-n

Как сделать блок питания на 12 вольт своими руками — примеры схем
Как сделать блок питания на 12 вольт своими руками — примеры схем
Внешний транзистор n-p-n.

Эта схема рекомендуется разработчиками и включена в даташит на микросхему. Выходной ток не должен превышать наибольший ток коллектора транзистора, который должен быть обязательно снабжен теплоотводом.

Схема с транзистором p-n-p

Если полупроводниковый триод структуры n-p-n отсутствует, то можно умощнить стабилизатор полупроводниковым триодом p-n-p.

Внешний транзистор p-n-p.
Внешний транзистор p-n-p.
Внешний транзистор p-n-p.

Кремниевый маломощный диод VD увеличивает выходное напряжение 7812 на 0,6 В и компенсирует падение напряжения на эмиттерном переходе транзистора.

Проблемы простого блока питания с нагрузкой

Сопротивление, нарисованное на схеме – это эквивалент нагрузки. Нагрузка должна быть такова, чтобы ток, ее питающий, при подаваемом напряжении в 12 В не превысил 1 А. Можно рассчитать мощность нагрузки и сопротивление по формулам.

Формулы мощности нагрузки и сопротивления

Откуда сопротивление R = 12 Ом, а мощность P = 12 ватт. Это значит, что если мощность будет больше 12 ватт, а сопротивление меньше 12 Ом, то наша схема начнет работать с перегрузкой, будет сильно греться и быстро сгорит. Решить проблему можно несколькими способами:

  1. Стабилизировать выходное напряжение так, чтобы при изменяющемся сопротивлении нагрузки ток не превышал максимально допустимого значения или при внезапных скачках тока в сети нагрузки – например, в момент включения некоторых приборов – пиковые значения тока срезались до номинала. Такие явления бывают, когда блок питания запитывает радиоэлектронные устройства – радиоприемники, и пр.
  2. Использовать специальные схемы защиты, которые бы отключали блок питания при превышении тока на нагрузке.
  3. Использовать более мощные блоки питания или блоки питания с большим запасом мощности.

Использование импульсных преобразователей

До этого мы строили блоки питания на дискретных элементах, но для этого можно использовать готовые модули. В интернете можно найти все что угодно, а стоит это «что угодно», как правило, недорого. Для работы таких преобразователей на вход нужно подать постоянное напряжение, подойдет любой блок питания с соответствующим выходным напряжением (12-24-36 вольт), например, от ноутбука, или несколько блоков питания для светодиодной ленты одинаковой мощности, соединённых последовательно.

Для начала рассмотрим несколько наиболее популярных преобразователей DC/DC, которые можно использовать для построения лабораторных блоков питания.

Понижающий импульсный преобразователь XL4016

Несмотря на относительно невысокую стоимость, этот преобразователь обладает неплохими характеристиками:

  • Uвх. – 3…40 В;
  • Uвых. – 1.2…35 В (регулируется);
  • Iвх. макс. – 10 А;
  • I вых. – 140 мА…12 А (регулируется);
  • P вых. макс. – 300 Вт (при принудительном охлаждении);
  • I холостого хода – 25 мА;
  • защита от КЗ и перегрева – есть.

Ток и напряжение плавно регулируются при помощи подстроечных многооборотных резисторов, которые в лабораторном БП лучше заменить на потенциометры.

Как сделать самодельный регулируемый блок питания - подборка схем
Как сделать самодельный регулируемый блок питания - подборка схем

Схема включения модуля довольно простая и осуществляется при помощи винтовой колодки с четырьмя клеммами. На первые две клеммы подаем входное напряжение, соблюдая полярность, с двух других снимаем ток и напряжение, заданные подстроечными резисторами.

Схема включения импульсного преобразователя  XL4016
Схема включения импульсного преобразователя  XL4016

Существует модификация этого преобразователя, имеющая выходную мощность 80 Вт (Iвых. макс. – 8 А). Внешне она выглядит практически так же, но стоит в полтора раза дешевле и не имеет защиты от КЗ и переполюсовки/перегрева. В остальном эта модификация ничем не отличается от предыдущей.

Как сделать самодельный регулируемый блок питания - подборка схем
Как сделать самодельный регулируемый блок питания - подборка схем

Повышающий импульсный преобразователь XL4016

Несмотря на то же «имя» и внешнее сходство этот преобразователь имеет существенное отличие от двух предыдущих. Во-первых, он позволяет регулировать только выходное напряжение, причем в гораздо более узком диапазоне. Во-вторых, он повышающий. То есть с его помощью можно получить выходное напряжение выше, чем входное.

Как сделать самодельный регулируемый блок питания - подборка схем
Как сделать самодельный регулируемый блок питания - подборка схем

Остальные характеристики модуля следующие:

  • Uвх. – 10…32 В;
  • Uвых. – 12…35 В (регулируется);
  • Iвх. макс. – 10 А;
  • I вых. – 140 мА…6 А (регулируется);
  • P вых. макс. – 150 Вт (при принудительном охлаждении);
  • I холостого хода – 25 мА;
  • защита от КЗ и переполюсовки – нет.

Приобрести модули XL4016 всех вышеперечисленных модификаций можно на Алиэкспресс. Стоимость – от $3 до $4.

DC to DC Step Down Buck Converter 5V-30V to 0.8V-29V 5A

Практически готовый лабораторный блок питания, позволяющий получить напряжения в диапазоне 0.8…29 В и ограничивать ток от 0 до 5 А.

Как сделать самодельный регулируемый блок питания - подборка схем
Как сделать самодельный регулируемый блок питания - подборка схем

Как видно из фото, блок состоит из двух модулей – регулировок и измерения. При помощи первого мы регулируем параметры выходного напряжения, второй представляет собой цифровой вольтамперметр с возможностью передачи данных на ПК по интерфейсу RX-TX.

Как сделать самодельный регулируемый блок питания - подборка схем
Как сделать самодельный регулируемый блок питания - подборка схем

Питается модуль от любого источника постоянного напряжения 5…30 В соответствующей мощности. КПД устройства, если верить производителю, составляет 95%. Выходное напряжение можно регулировать в пределах 0.8…29 В, ток – 0.1…5 А. При выходном токе выше 3 А необходимо использовать принудительное охлаждение.

Стоит такое удовольствие $5.85, а приобрести его можно здесь. Схема подключения модуля предельно проста. На вход подаем питание, с выхода снимаем то, что желаем, устанавливая параметры при помощи подстроечных резисторов. Для подключения устройства к ПК служит трехконтактный разъем на плате дисплея. Распиновка его указана ниже. Двухконтактный разъем не используется.

Как сделать самодельный регулируемый блок питания - подборка схем
Как сделать самодельный регулируемый блок питания - подборка схем

Для оперативной регулировки напряжения и тока подстроечные резисторы (оба номиналом 10 кОм) стоит заменить на переменные, расположив их на лицевой панели блока питания.

Импульсный преобразователь CN4015-3.1

Этот понижающий преобразователь менее мощный, чем предыдущая модель, но имеет встроенный цифровой дисплей и тоже позволяет регулировать ток и напряжение.

Как сделать самодельный регулируемый блок питания - подборка схем
Как сделать самодельный регулируемый блок питания - подборка схем

Основные характеристики этого модуля следующие:

  • Uвх. – 5…36 В;
  • Uвых. – 1.2…32 В (регулируется);
  • Iвых. – 0…5 А;
  • Pвых. – 75 Вт;
  • защита от КЗ и перегрева – есть.

Поскольку дисплей однострочный, он используется для отображения величины как напряжения, так и тока. Для переключения режима служит механическая кнопка. Не совсем удобно, но вполне приемлемо. Дополнительно на этот же индикатор можно вывести значение величины входного напряжения. Есть режим калибровки амперметра и вольтметра по контрольным приборам.

Также устройство оснащено портом USB для зарядки гаджетов и светодиодной индикацией режимов – наличие входного/выходного напряжений, режим стабилизации и пр. Со схемой подключения и назначением органов управления/индикации можно познакомиться на рисунке, приведенном ниже.

Как сделать самодельный регулируемый блок питания - подборка схем
Как сделать самодельный регулируемый блок питания - подборка схем

Приобрести этот преобразователь можно на Алиэкспресс за $4, перейдя по этой ссылке.

Напряжение на порте USB соответствует установленному выходному напряжению, а не фиксированным 5 В. С одной стороны, это позволяет производить ускоренную зарядку, с другой, можно запросто сжечь гаджет, рассчитанный не более чем на 5 В.

Импульсный преобразователь повышенной мощности

Этот модуль может обеспечить ток до 20 А, обладает расширенным диапазоном регулировки напряжения, и им мы закончим наш небольшой обзор импульсных преобразователей DC/DC с регулировкой по выходу. Устройство позволяет плавно регулировать ток и напряжение, имеет защиту от КЗ, перегрева и перегрузки.

Взглянем на основные характеристики модуля:

  • Uвх. – 6…40 В;
  • Uвых. – 1.2…36 В (регулируется);
  • Iвых. – 0…20 А (рекомендуется не более 15 А);
  • Pвых. – 300 Вт;
  • защита от КЗ – есть (самовосстановление, не держит длительной перегрузки).

Как сделать самодельный регулируемый блок питания - подборка схем
Как сделать самодельный регулируемый блок питания - подборка схем

Модуль имеет светодиодную индикацию работы и переключатель, отключающий выходное напряжение. Схема включения преобразователя и назначение органов управления приведены ниже, а сам модуль можно приобрести за $3.3 на все том же Алиэкспресс.

Как сделать самодельный регулируемый блок питания - подборка схем
Как сделать самодельный регулируемый блок питания - подборка схем

Параметрический стабилизатор

Если по какой-либо причине интегральный стабилизатор недоступен, можно выполнить узел на стабилитроне. Надо выбрать стабилитрон с напряжением стабилизации 12 В и рассчитанный на соответствующий ток нагрузки. Наибольший ток для некоторых 12-вольтовых отечественных и импортных стабилитронов указан в таблице.

Тип стабилитрона Д814Г Д815Д КС620А 1N4742A BZV55C12 1N5242B
Ток нагрузки 5 мА 0,5 А 50 мА 25 мА 5 мА 40 мА
Напряжение стабилизации 12 вольт

Как сделать блок питания на 12 вольт своими руками — примеры схем
Как сделать блок питания на 12 вольт своими руками — примеры схем
Схема простого параметрического стабилизатора.

Номинал резистора рассчитывается по формуле:

R= (Uвх min-Uст)/(Iн max+Iст min), где:

  • Uвх min – минимальное входное нестабилизированное напряжение (должно быть не менее 1,4 Uст), вольт;
  • Uст – напряжение стабилизации стабилитрона (справочная величина), вольт;
  • Iн max – наибольший ток нагрузки;
  • Iст min – минимальный ток стабилизации (справочная величина).

Если стабилитрон на нужное напряжение отсутствует, его можно составить из двух последовательно включенных. При этом суммарное напряжение должно быть 12 В (например, Д815А на 5,6 вольта плюс Д815Б на 6,8 вольт дадут 12,4 В).

Важно! Соединять стабилитроны (даже однотипные) параллельно «для увеличения тока стабилизации» нельзя!

Стабилитроны параллельно не соединяют.
Стабилитроны параллельно не соединяют.
Стабилитроны параллельно не соединяют.

Умощнить параметрический стабилизатор можно тем же способом – включением внешнего транзистора.

Как сделать блок питания на 12 вольт своими руками — примеры схем
Как сделать блок питания на 12 вольт своими руками — примеры схем
Схема мощного стабилизатора.

Для мощного транзистора надо предусмотреть радиатор. Напряжение питания в этом случае будет меньше Uст стабилитрона на 0,6 В. При необходимости выходное напряжение можно подкорректировать в большую сторону включением кремниевого диода (или цепочки диодов). Каждый элемент в цепочке будет увеличивать Uвых примерно на 0,6 В.

Как сделать блок питания на 12 вольт своими руками — примеры схем
Как сделать блок питания на 12 вольт своими руками — примеры схем
Схема стабилизатора со стабилитроном и диодом.

Фильтр

Выходное напряжение надо отфильтровать – оно содержит большое количество продуктов преобразования. Так как инвертор работает на достаточно большой частоте, то эффективными становятся фильтры, содержащие не только конденсаторы, но и малогабаритные дроссели относительно небольшой индуктивности.



Г- и П-образные LC-фильтры.

Для расчета элементов фильтра надо задаться коэффициентом пульсаций Кп. Он выбирается из предполагаемой нагрузки:

  • чувствительная аппаратура для радиоприема, предварительные каскады аудиоаппаратуры, микрофонные усилители – Кп=10-5..10-4;
  • усилители звуковой частоты – Кп=10-4..10-3;
  • приемная и звуковоспроизводящая аппаратура среднего и низкого класса – Кп=10-2..10-3.

Для Г-образного фильтра, устанавливаемого после двухполупериодного выпрямителя, действуют соотношения:

  • L*C=25000/(f2+Кп);
  • L/C=1000/R2н.

В этих формулах:

  • L – индуктивность дросселя в мкГн;
  • С – емкость конденсатора в мкФ;
  • f – частота преобразования в Гц;
  • Rн – сопротивление нагрузки в Омах.

Для П-образного фильтра:

  • С1=С2=С;
  • L/C=1176/R2н.

Размерность величин та же, что и для предыдущего фильтра.

Устройство и конструкция

Простой 12-вольтовый БП без трансформатора можно сделать из нескольких радиоэлементов. Он представляет собой диодный мост VD1-4 и 3 однотипных транзисторных стабилизатора, включенных последовательно.

Схема

Другая схема состоит из следующих деталей:

  • 2 конденсаторов C1 и C2;
  • 4 диодов, образующих мост VD1-4;
  • 1 стабилитрона D1.

C1, подключенный к сети 220 В, гасит большую часть напряжения. Оно выпрямляется диодным мостом VD1-4. Цепочка D1, C2 является параметрическим стабилизатором, с выхода которого снимается постоянное напряжение, питающее нагрузку.

Схема

Более продвинутое устройство содержит на входе сопротивление R1 для подавления броска тока и RC-цепочку — подключенные параллельно гасящая емкость C1 и резистор r2 большого номинала для ее разрядки. Средняя часть схемы такая же. На выходе установлен дополнительный неполярный конденсатор C3.

Схема_2

Дальнейшее усовершенствование предполагает установку на выходе БП стабилизатора VR1 на транзисторах или микросхеме.

Схема_3

Эти блоки опасны, так как их детали находятся под напряжением 220 В. При отсутствии нагрузки (если испорчен стабилизатор) потенциал на выходе будет равен сетевому.

Область применения

Блоки питания с вторичным напряжением в 12 Вольт импульсного типа используются для подключения к бытовой электрической сети:

  • персональных компьютеров различного типа – для зарядки их аккумуляторных батарей и работы непосредственно от сети;
  • для зарядки электронных гаджетов, в том числе сотовых телефонов и смартфонов, плееров и видеокамер, а также прочих устройств, имеющих в своей конструкции аккумуляторные батареи;
  • для зарядки ручного переносного электрического инструмента – шуруповёрт, болгарка и т.д.;
  • для подключения LED светотехнических приборов (светодиодные светильники и ленты);
  • для использования прочих устройств, предполагающих работу от сети постоянного тока с напряжением 12 В и до 5 ампер, – автомагнитола или автоприёмник в условиях дома или гаража.








Регулирование выходного напряжения

Если напряжение блока питания надо регулировать от нуля, то оптимальной схемой будет параметрический стабилизатор с добавлением переменного резистора.

Как сделать блок питания на 12 вольт своими руками — примеры схем
Как сделать блок питания на 12 вольт своими руками — примеры схем
Плавное регулирование напряжения.

Резистор в 1 кОм, включенный между базой транзистора и общим проводом, защитит триод от выхода из строя при обрыве цепи движка потенциометра. При вращении ручки переменного резистора напряжение на базе транзистора будет меняться от 0 до Uст стабилитрона с отставанием примерно в 0,6 вольт. Надо учитывать, что параметры узла будут хуже из-за использования потенциометра – наличие движущегося контакта (даже хорошего качества) неизбежно снизит стабильность напряжения на базе транзистора.

Читайте также



Как сделать блок питания из энергосберегающей лампы

Добиться регулирования от 0 до 12 вольт схемы с интегральным стабилизатором серии 78XX намного сложнее. Если достаточно диапазона регулирования от 5 до 12 В, можно применить микросхему 7805 и включить ее по схеме с потенциометром. Стабилитрон должен быть на напряжение около 7 вольт (КС168 с диодом или без него, КС175 и т.п.). В нижнем положении движка потенциометра вывод GND соединяется с общим проводом, и на выходе будет 5 вольт. При смещении движка к верхнему выводу напряжение на нем будет расти вплоть до Uст стабилитрона и складываться с напряжением стабилизации микросхемы.

Плавное регулирование
Плавное регулирование
Плавное регулирование от 5 до 12 вольт.

Можно применить микросхему LM317. Она также имеет три вывода и специально разработана для создания регулируемых источников. Но у этого стабилизатора нижний порог напряжения начинается от 1,25 вольт. В интернете много схем на LM317 с регулировкой от нуля, но 90+ процентов этих схем неработоспособны.

схема включения LM317.
схема включения LM317.
Стандартная схема включения LM317.

Читайте также: Самодельный блок питания с регулировкой напряжения и тока 0 до 30В

Back To Top