Внешний вид и особенности конструкции
Данные устройства представляют собой контактную группу, изготовленную на основе ферримагнитного материала, которая помещается в стеклянную колбу. Из нее откачен воздух (созданы условия максимально приближенные к вакууму), как вариант возможно наполнение инертным газом. Внешний вид устройства и его обозначение на принципиальных схемах представлены ниже.
А) внешний вид геркона; В) обозначение на принципиальных схемах
С конструктивным исполнением, можно ознакомиться на рисунке 2.
Конструкция геркона
Обозначение:
- А – выводы устройства.
- В – стеклянная колба.
- С – контактная группа.
- D – инертный газ или вакуум.
Это интересно: Замена пробок на автоматы своими руками — видео, схема, фото
Конструкция герконов
Конструкция различных типов герконов представлена на рис. 2.
Измерение основных электрических параметров
Электрические параметры герконов следует измерять при нормальных климатических условиях, в режимах и условиях, установленных в технических условиях на герконы конкретных типов. При проведении измерений должны быть приняты меры к устранению влияния паразитных внешних магнитных и электрических полей или к их уменьшению, а также не должна возникать вибрация герконов, вызывающая изменение параметров. При измерении электрических параметров геркон должен управляться измерительной катушкой без ферромагнитных материалов. Требования к измерительной катушке и положение геркона в ней должны соответствовать установленным в ТУ на герконы конкретных типов.
Измерение магнитодвижущей силы срабатывания, отпускания и коэффициента возврата
Погрешность измерения.за счет влияния внешних электрических и магнитных полей не должна превышать 0,5А и не должна быть более 2%. МДС срабатывания определяют по значению тока, протекающего через измерительную катушку в момент срабатывания геркона. МДС отпускания определяют по значению тока, протекающего через измерительную катушку в момент опускания геркона. Коэффициент возврата определяют как отношение МДС отпускания к МДС срабатывания. Момент срабатывания и опускания герконов под воздействием управляющего магнитного поля определяют методом контроля состояния цепи геркона. При определении МДС срабатывания и МДС отпускания через контакт-детали геркона должен проходить постоянный ток.
МДС срабатывания и МДС отпускания геркона измеряют при плавном измерении тока в измерительной катушке. Ток в катушке повышают со скоростью не более 5 А-мс-1 до значения, обеспечивающего МДС, равную МДС насыщения; МДС насыщения равно 2,2 значения наибольшего МДС срабатывания для группы герконов. При МДС насыщения геркон выдерживают в течение времени tH, равному не менее 20 мс. Ток в катушке уменьшают со скоростью не более 5А-мс-1 до значения, обеспечивающего МДС, равную МДС удерживания. Далее со скоростью не более 1 А-мс-1 до отпускания геркона. Момент отпускания фиксируют. Ток в катушке уменьшают со скоростью не более 5 А-мс-1 до нулевого значения. Геркон выдерживают без тока в катушке в течение времени не менее 20 мс.
Ток в катушке повышают со скоростью не более 5 А;мс-1 от нулевого значения до значения, обеспечивающего МДС несрабатывания. Переходят к скоросте не более 1 А-мс-1 до срабатывания геркона. Момент срабатывания фиксируют. При несрабатывании геркона тока в катушке повышают до максимального значения МДС срабатывания для данной группы герконов. Если последним измеряемым параметром является МДС, то ток в катушке скачком уменьшают до нулевого значения или продолжают измерение следующего параметра.
МДС (А) определяют по формуле: МДС = Iкат · Nкат
Будет интересно➡ Диодный мост – что это такое?
где Iкат – ток через катушку в момент фиксации срабатывания/отпускания; N – число витков измерительной катушки (5000).
Коэффициент возврата определяют по формуле:
Кв = МДС отп / МДС сраб
Относительная погрешность измерения МДС срабатывания и МДС отпускания не должна выходить за пределы ±1 А при измерении МДС до 20 А, ±2 А — от 20 до 80 А и ±5% —свыше 80 А с вероятностью не менее 0,95.
Использование геркона в датчике.
Измерение временных параметров
Временные параметры, определяют измерением интервалов времени в соответствии с временными диаграммами срабатывания и отпускания геркона. Генератор прямоугольных импульсов тока должен обеспечивать на выходе одиночные импульсы или серию импульсов с длительностью фронтов, измеренных между уровнями 0,1 и 0,9 их амплитуды, не более 50 мкс на активной нагрузке и амплитудой, обеспечивающей в измерительной катушке рабочую МДС. Измеряют интервалы времени срабатывания и отпускания. При измерении времени дребезга не учитывают разрывы цепи менее 10 мкс.
Измерение электрического сопротивления
Сопротивление геркона измеряют при замкнутых контакт-деталях с помощью четырехпроводного подключения (токового и потенциального) приборами непосредственного отсчета или методом вольтметра-амперметра на постоянном токе. Измерение сопротивления геркона проводят на установке, электрическая структурная схема которой приведена ниже:
G — источник тока; PV1,PV2 — милливольтметры; RK — калиброванный резистор; Е — испытуемый геркон.
Источник тока G должен удовлетворять следующем требованиям: обеспечивать ток в цепи геркона не более 0,1 А с погрешностью в пределах ±2,5%; иметь максимальное напряжение на разомкнутом герконе не более 6В.
Геркон на схеме.
Характеристики переключающих и измерительных герконов
30…100 | 30…45 | 80 | 30…100 | ||
Время срабатывания, мс | 1,5 | 1,5 | 1,5 | 2 | 2 |
Максимальная коммутируемая мощность, Вт | 30 | 30 | 0,36 | 1,5 | 1 |
Максимальное коммутируемое напряжение, В | 150 | 127 | 36 | 36 | 300 |
Максимальный коммутируемый ток, А | 1 | 1 | 0,01 | 0,1 | 0,01 |
Сопротивление электрических контактов, Ом | 0,15 | 0,3 | 0,15 | 0,08 | 0,1 |
Максимальная частота коммутаций, Гц | 50 | 100 | 100 | 100 | 50 |
Температура окружающей среды, °С | -60… + 125 | -60… + 125 | -60… + 125 | -60… + 85 | -60… + 85 |
Вибрационные нагрузки, диапазон частот, Гц | 1…2000 | 1…2000 | 1…2000 | 1…600 | 5…600 |
Вибрационные нагрузки, максимальное ускорение, м/с2 | 98 | 245 | 196 | 49 | 98 |
Диаметр баллона, общая длина, мм | 27/67 | 18/54 | 15/50 | 53/79,5 | 28/52,3 |
Схема
Дребезг контактов
Отдельно стоит упомянуть и такое неприятное для цифровой техники (где, в основном, и используются герконы) явление как дребезг контактов. После замыкания наблюдается серия бесконтрольных актов потери и приобретения контакта.
Справедливости ради следует отметить, что такое поведение характерно для большинства механических коммутационных аппаратов. Подключив геркон напрямую к синхронному входу можно получить непредсказуемые результаты.
Меры, направленные против дребезга контактов:
- Добавка ртути (что чревато ее утечкой при разбитии колбы);
- Подключение через специальные электронные схемы;
- Использование демпфирующих фильтров (в отдельных случаях);
- Программные средства.
Последние реализуются следующими способами:
- Временная задержка;
- Подсчет вторичных коммутаций в течение определенного интервала времени;
- Вычисление длительности текущего состояния.
Очевидно, что подключить геркон своими руками — не самая легкая задача, если вы не владеете основами электротехники и электроники.
ПОДКЛЮЧЕНИЕ ОХРАННОЙ СИГНАЛИЗАЦИИ
Рассмотрим как подключить охранную сигнализация на примере наиболее распространенных типов оборудования.
Приемно- контрольный прибор.
Это устройство в обязательном порядке имеет клеммы, обозначенные как «ШС» — шлейф сигнализации. В зависимости от его типа при подключении может учитываться полярность «+», «-«. Это нужно при использовании адресных устройств или извещателей, получающих питание по шлейфу. Для обычных датчиков это не принципиально.
Кроме того, к ПКП подключаются:
- оповещатели,
- системы передачи извещений (СПИ) — клеммы ПЦН.
При использовании GSM сигнализации последний пункт не актуален, поскольку передача данных осуществляется беспроводным способом встроенным в прибор модулем.
Управление системами оповещения могут производиться несколькими способами:
- «Сухими» контактами реле (вариант А). В этом случае необходима дополнительная подача напряжения питания.
- Выходами «открытый коллектор» (вар. Б). Похоже на релейный вариант, только обязательно соблюдение полярности .
- Специально предназначенными для этих целей клеммами (случай В). В этом случае напряжение на них подается внутри прибора на аппаратном уровне.
Описанные варианты приведены на схеме 2.
Подключение датчиков охранной сигнализации.
Большинство охранных датчиков являются энергопотребляющими устройствами. Это значит, что на их клеммной колодке имеются минимум 4 винтовых зажима. Исключение составляют адресные извещатели, они получают питание по шлейфу и подключаются по двухпроводной линии.
Совмещенные извещатели имеют в своем составе два самостоятельных датчика с независимыми выходами. Их подключение может осуществляться двумя способами:
- в различные охранные шлейфы;
- к общему шлейфу по схеме «И».
Способы управления, примеры использования
Герконы имеют ряд механических и электрических параметров, которые характеризуют их свойства. Эти параметры можно разделить на две большие группы: механические и электрические.
Механические параметры герконов
К механическим параметрам относится магнитодвижущая сила срабатывания. Этот параметр показывает, при каком значении напряженности магнитного поля происходит срабатывание и отпускание контакта. В технической документации это называется как магнитодвижущая сила срабатывания (обозначается Vср) и магнитодвижущая сила отпускания (обозначается Vотп).
Немаловажными параметрами геркона, в ряде случаев основными, является скорость его срабатывания и отпускания. Эти параметры измеряются обычно в миллисекундах и обозначаются соответственно как tср и tотп, которые в целом характеризуют быстродействие геркона. Герконы, имеющие меньшие геометрические размеры обладают более высоким быстродействием.
Максимальное число срабатываний, или попросту ресурс, также относится к группе механических параметров. Этот параметр оговаривает, при каком числе срабатываний все свойства геркона, как механические, так и электрические сохраняются в пределах допустимых значений. В технической документации обозначается как Nmax.
Электрические параметры герконов
Эти параметры такие же, как у обычных механических контактов. Сопротивление, измеренное между замкнутыми контактами называется сопротивлением контактного перехода и обозначается как Rк, а сопротивление, измеренное между разомкнутыми контактами есть не что иное, как сопротивление изоляции Rиз.
Электрическая прочность геркона. Этот параметр характеризует пробивное напряжение Uпр. Это напряжение в основном определяет качество изоляции между контактами, которое в свою очередь обусловлено качеством вакуума или заполнения колбы инертными газами. Кроме этого пробивное напряжение зависит от величины зазора между контактами и качества их покрытия.
Мощность, коммутируемая герконом определяется в основном его конструкцией: материалом и размерами контактов, а также типом покрытия контактных площадок. В технической документации этот параметр обозначается как Pmax.
Емкость, измеренная между разомкнутыми контактами обозначается как Cк. Она зависит лишь от геометрических размеров геркона и расстояния между разомкнутыми контактами.
Разновидности
Устройство работает по принципу размыкания, либо замыкания линии, передающей электричество. Напряженность магнитного потока задает замкнутое или разомкнутое положение. Примечательно, что не важно, откуда возникает магнитное поле. Оно может появляться как от электромагнита, так и постоянного магнита.
Намагничивание в устройстве начинает происходить тогда, когда под действие попадают силовые линии. После этого, сила упругости преодолевается и притягивает контакты друг к другу. В итоге цепь замыкается.
В таком состоянии датчик будет находиться до тех пор, пока будет оставаться магнитное поле. После прекращения воздействия силовых линий контакты размыкаются. Чтобы произошло следующее замыкание, необходимо, чтобы создалось поле вокруг устройства снова.
Исходя из этого, специалисты считают геркон переключателем.
Замыкающие
Замыкающие по своему принципу работы постоянно находятся в разомкнутом состоянии. Для них это нормальное статичное положение, а контакты между собой не соединятся.
Переключающие
У такого типа в составляющей конструкции есть три вывода. При нормальном состоянии, когда отсутствует влияние электромагнитного поля, оба контакта замкнуты (один с другим). После появления поля, в одном контакте происходит замыкание, а тот, который замкнут нормально — размыкается.
Размыкающие
Размыкающие отличаются тем, что когда магнитное поле отсутствует, контакты соединяются между собой. Такой тип относят к нормально разомкнутым.
Типы по технологическим особенностям
Так как конструкций различных герконовых реле много, выделяют ряд характеристик. Благодаря ним можно отличать конкретный вид от остальных. К основным характеристикам относят:
- Время отпускания — этот тот период времени от момента, когда ток в катушке пропадает, до перехода контактов в своё обычное положение. Промежуток времени — 0,2-1 мкс.
- Уровень вибрации. Этот заданный уровень нельзя превышать, так как стеклянные колбы трескаются. Измерение величины вибрации происходит количеством колебания в секунду.
- Время реакции. Промежуток времени, начинающийся с подачей тока, и завершаемый в момент размыкания или замыкания. Составляет примерно 0,5-2 мкс.
- Допустимое показание. Мощность герконового датчика определяется из совокупности сечения контактов и материала. Измерение происходит в кВт и Вт.
- Емкость контактов. Она может измеряться только тогда, когда контакты разомкнуты.
Сухие
Сухой выглядит как герметичный баллон, состоящий из стекла. Внутри него находятся контакты. К контактам относятся сердечники из магнита, они привариваются снаружи колбы, с торца. При этом ртуть в этом случае не добавляется.
Ртутные
При ртутном контакте в стеклянный корпус добавляются ртутные капли, благодаря которым смачивается деталь. При срабатывании геркона качество контакта улучшается. Благодаря такой системе можно избежать дребезга и вибрации в контактах. Это увеличит время срабатывания.
Характерные ошибки при монтаже герконов
- Установка герконов на подвижные элементы оборудования, без учета вибрационной защиты, в результате чего разрушается стеклянная колба.
- Установка герконов без учета предельно допустимых значений напряжения и мощности, в результате чего контакты могут залипать, пригорать, и в итоге выходить из строя.
- При линейном передвижении геркона в пространстве относительно магнита, или наоборот интервал расстояния должен соответствовать силы магнитного поля для переключения контактов. При большом расстоянии силы магнитного поля может быть недостаточно для срабатывания.
- Прежде чем подключить установленной сети проверьте его срабатывание мультиметром в режиме прозвонки. Особенно когда конструкция закрывается лицевой панелью или другими элементами, в противном случае для исправления придется разбирать установленные элементы.
- При монтаже датчиков защиты по току на герконах, не забывайте вращением сердечника настроить их на предельный ток срабатывания. В противном случае они будут срабатывать при меньшем токе, ограничивая производственный процесс, или вообще не сработают и аппаратура сгорит.
Параметры замыкающих герконов миниатюрного типа
Магнитодвижущая сила срабатывания, А | 35…90 | 21…64 | 35 | 13…40 | 14…25 |
Время срабатывания, мс | 2 | 1 | 1 | 0,8 | 0,8 |
Максимальная коммутируемая мощность, Вт | 15 | 7,5 | 0,3 | 3,6 | 1 (ВА) |
Максимальное коммутируемое напряжение, В | 115 | 180 | 30 | 36 | 36 |
Максимальный коммутируемый ток, А | 0,5 | 0,25 | 0,01 | 0,1 | 0,1 |
Сопротивление электрических контактов, Ом | 0,3 | 0,15 | 0,15 | 0,3 | 0,3 |
Максимальная частота коммутаций, Гц | 100 | 100 | 100 | 10…10 | 100 |
Температура окружающей среды, °С | -60…+125 | -60…+125 | -45…+70 | -60…+125 | -60…+125 |
Вибрационные нагрузки, диапазон частот, Гц | 2000 | 1 …2000 | 1…600 | 3000 | 1…3000 |
Вибрационные нагрузки, максимальное ускорение, м/с2 | 196 | 196 | 49 | 98 | 196 |
Диаметр баллона, общая длина, мм | 21,5/40 | 20/46 | 16/- | 10,5/30,5 | 10/42,5 |
Обозначение и маркировка
Герконы относятся к устройствам релейного типа. Поэтому правильное их обозначение указано в ГОСТ 2 .756−76 ЕСКД. На электрических схемах условно графическое изображение нормально разомкнутого геркона выглядит в виде окружности, в середине которой изображаются два последовательных отрезка. С левой стороны начиная с места разрыва, к отрезку чертится небольшой прямая линия, подходящая к нему под углом 120. Окружность символизирует собой герметичность устройства, а отрезки — коммутационные контакты.
В нормально замкнутом же обозначении, выводы в окружности рисуются пересекающимися. Обозначение трёх контактного устройства выглядит по-другому. Всё так же рисуется окружность, но в ней, с одной стороны, изображаются два параллельных отрезка, а с другой — отрезок, расположенный по центру расстояния между ними. На нём же рисуется и переключающий контакт.
Согласно советским нормам на схемах и в литературе геркон подписывается буквой «К», после которой ставится порядковый номер изделия на схеме. В иностранном же обозначении используются две латинские буквы SF.
Стандарта же в маркировке изделий нет. Каждый производитель обычно на корпус геркона наносит своё заводское обозначение: например, КЭМ, TRA, АСМК, КА, КСК. Поэтому чтобы узнать к какому типу относится то или иное устройство, понадобится смотреть даташит производителя.
Это интересно: Проверка автоматических выключателей напряжением до 1000 в: изучаем в общих чертах
Классификация герконов
Принцип работы нормально-разомкнутого геркона
Герконовые переключатели подразделяются на виды по нескольким критериям.
Нормальное состояние контактов
Контакты бывают:
- замкнутые – размыкание цепи происходит посредством магнитного поля;
- переключаемые/бистабильные – один контакт замыкается при воздействии поля, другой – если его нет;
- разомкнутые – геркон срабатывает в момент образования магнитного поля.
Принцип действия нормально-замкнутого геркона
Модели с переключаемыми контактами имеют 3 вывода.
Конструкция
Срабатывание переключающего геркона
Существуют такие датчики:
- гильзовые – стеклянная оболочка заполняется инертным газом либо воздухом;
- ртутные – для улучшения коммутации, снижения сопротивления и устранения вибраций контакты покрываются ртутью.
Гильзовые герконы имеют сухие контакты.
Технические параметры
В зависимости от технических характеристик бывают:
- Геркотрон – герконовое реле с изоляцией высоковольтного типа. Работает в сети под напряжением 10-100 кВ.
- Газакон – модификация, которая запоминает положение контактов после выключения магнитного поля.
- Герксикон – реле, с помощью которого активируется сигнализация и оборудование мощностью до 3 кВт. Отличается повышенным током коммутации и дугогасительными контактами.
Устройства могут заменить электромеханическое реле.
Принцип работы
Упрощеное изображение конструкции герконового реле
Принцип работы герконового датчика основывается на размыкании или замыкании сети, где он стоит, под воздействием электромагнитного поля. Напряжение магнитного потока определяет положение контактов. Поле генерируется постоянным или электрическим магнитом.
Внутренние контакты прибора намагничиваются в момент попадания под действие силовой линии. Притягивание элементов осуществляется под действием, преодолевающим силу упругости. Так происходит замыкание цепи. При подключении линии к источнику питания ток протекает через устройство.
Это состояние длится до момента прекращения воздействия силовой линии. Контакты размыкаются без магнитного поля. Для повторного замыкания понадобится вновь генерировать поле.
Геркон – это малогабаритный переключатель, работающий от силового воздействия магнитного потока.
Параметры
- Магнитодвижущая сила срабатывания — значение напряжённости магнитного поля, при котором происходит замыкание контактов геркона.
- Магнитодвижущая сила отпускания — значение напряжённости магнитного поля, при котором происходит размыкание контактов геркона.
- Сопротивление изоляции — электрическое сопротивление зазора между сердечниками (в разомкнутом состоянии).
- Сопротивление контактного перехода — электрическое сопротивление контактной области, которая образуется при замыкании сердечников.
- Пробивное напряжение — напряжение, при котором происходит пробой геркона.
- Время срабатывания — время между моментом приложения управляющего магнитного поля и моментом первого физического замыкания электрической цепи герконом.
- Время отпускания — время между моментом снятия приложенного к геркону магнитного поля, и моментом последнего физического размыкания электрической цепи герконом.
- Ёмкость — электрическая ёмкость между выводами геркона в разомкнутом состоянии.
- Максимальное число срабатываний — число срабатываний, при котором все основные параметры геркона остаются в допустимых пределах.
- Максимальная мощность — максимальная мощность, коммутируемая герконом.
- Коммутируемое напряжение.
- Коммутируемый ток.
Технические параметры выбора
При выборе следует учесть ряд технических характеристик этого прибора. К основным из них относятся:
- коммутационная способность по току;
- максимальное напряжение;
- напряжение пробоя промежутка между контактами;
- переходное сопротивление контактов;
- предельная мощность нагрузки, которую можно подключить к выводам герметизированного контакта;
- время замыкания и размыкания прибора;
- напряженность поля, при которой сработает геркон.
Дополнительная информация! Переходное сопротивление контактов способно увеличиваться по мере их выработки. Также оно зависит от силы магнитного поля, действующего на геркон, и его положения в пространстве.
Плюсы и минусы
У герконовых датчиков есть свои преимущества и недостатки. К плюсам относят:
- В контактах отсутствует дребезг. Это актуально для тех, выводы которых смочены ртутью.
- По сравнению с классическим реле датчики отличаются высоким быстродействием.
- Датчик считается долговечным и не поддаётся физическим ударам (например, при неосторожном обращении или падении).
- Такой вид датчика не создаёт шум.
- Контакты слабо сгорают, так как располагаются в вакууме или инертном газе. Это относится и к тем случаям, когда замыкание с размыванием происходит с возникновением искры.
- Доступная для всех цена, так как при производстве не используют тугоплавкие или драгоценные металлы.
- Небольшой размер по сравнению с классическими реле.
Минусы:
- По сравнению с открытыми контактами они тяжеловаты.
- Скорость срабатывания ограничена.
- Нужно создавать магнитное поле.
- Бывают случаи, когда контакты остаются в замкнутом состоянии и вывести их из него нельзя.
- Внешние магнитные поля влияют на них.
Способы управления герконами
Их можно разделить на две большие группы: управление постоянным магнитом и управление при помощи катушки с током. Эти способы показаны на рис. 4.
Управление герконом при помощи постоянного магнита
Наиболее прост и распространен способ управления с линейным перемещением магнита. Здесь вполне уместно вспомнить охранную сигнализацию, где магнит укреплен на двери и заставляет срабатывать геркон, когда дверь закрыта.
Способ с угловым перемещением магнита используется намного реже, как правило, в тех случаях, когда другие способы применить по какой-либо причине невозможно.
Перекрытие магнитного поля шторкой использовалось в клавиатурах различных вычислительных устройств, вплоть до девяностых годов прошлого столетия, а может быть можно встретить где-нибудь и до сих пор.
Управление герконом при помощи катушки с постоянным током
Этот способ получил наибольшее распространение при создании герконовых реле. Конструкция этих реле достаточно проста: внутрь катушки с током просто помещается геркон, и при этом не требуется никаких дополнительных пружинок и рычагов, как у обычного реле. Единственный в этом случае недостаток это небольшое количество контактных групп.
Если катушку выполнить достаточно толстым проводом, способным пропустить большой ток, то можно получить герконовое токовое реле. Такие реле широко применялись в мощных источниках постоянного тока в качестве датчика системы защиты от перегрузок. Точная настройка уровня срабатывания такого датчика осуществляется резьбовым механизмом, позволяющем плавно перемещать геркон вдоль оси катушки.
Устройство детали
Датчик геркон выглядит как небольшая стеклянная трубочка из зеленого полупрозрачного стекла. С двух сторон имеются проволочные выводы. Они позволяют припаять деталь к плате или подсоединить к ней провода. Существуют и трехконтактные модели.
Внутри стеклянной трубочки есть полость с безвоздушной средой. В полости находятся контакты, которые подключены к выводам прибора, находящимся снаружи. Такая деталь не имеет полупроводников. Поэтому она может работать на переменном токе.
Герконы довольно разнообразны по размерам. Небольшие модели имеют длину 10-15 мм. Более крупные бывают размером с ладонь.
Это интересно! Существует тенденция к уменьшению габаритных размеров герконов. В 2017 году американская компания «Hermetic Switch Inc» выпустила в серийное производство деталь с длиной трубки 4,01 мм. Достижения в этой области есть и у японских производителей. Компания «OKI» в 2005 году заявила о выпуске опытного образца с длиной колбы 2 мм. Однако широкого распространения данные детали пока что не получили.
Назначение и область применения
Герконовые датчики, несмотря на вытеснение их датчиками Холла, по-прежнему находят применение во многих устройствах и системах:
- Клавиатуры синтезаторов и промышленного оборудования. Конструкция датчиков исключает возможность возникновения искры. Поэтому в первую очередь их применяют на взрывоопасном производстве, где присутствуют горючие испарения или пыль.
- Бытовые счетчики.
- Автоматические системы охраны и контроля положения.
- Оборудование, работающее под водой или в условиях высокой влажности.
- Телекоммуникационные системы.
- Медицинское оборудование.
В системах безопасности применяются устройства, состоящие из геркона и магнита. Они сообщают об открытии или закрытии дверей. Также применяются герконовые реле, состоящие из контактного датчика и проволочной обмотки. Такая система обладает некоторыми преимуществами: простота, компактность, влагостойкость, отсутствие движущихся деталей. Используются герконы и в особых областях – это механизмы защиты от перегрузок и короткого замыкания высоковольтных и радиотехнических электроустановок. Также это высокомощные радары, лазеры, радиопередатчики и прочее оборудование, работающее под напряжением до 100 кВ.
Особенности управления контактами геркона
Можно выделить два способа управления, каждый из которых имеет свои конструктивные особенности:
Управления по средствам магнитного поля от постоянного магнита.
Геркон устанавливается неподвижно, магнит перемещается в пространстве относительно геркона, при приближении на расстояние когда сила магнитного поля достаточная для переключения контактов происходит срабатывание. Аналогично при удалении магнита от геркона, поле ослабеет, и контакты геркона возвращаются в исходное состояние.
Линии силового поля воздействующие на герконовые контакты
Классическим примером такого варианта является применение геркона в системах охранной сигнализации, когда геркон устанавливается на дверную коробку, а магнит на двери, можно наоборот.
Пример монтажа герконовых датчиков на двери
А – контакты находятся в разомкнутом состоянии;
Б – контакты замыкаются сигнализация срабатывает:
Совет №2 Рекомендуется в этом случае использовать датчики цилиндрической формы в пластиковом корпусе. Они незаметно устанавливаются в просверленные отверстия в коробке и двери. Для маскировки сверху можно наклееить эластичные заглушки соответствующего цвета.
Скрытые герконовые датчики в профиле металлических дверей
В зависимости от условий эксплуатации и функционального назначения, конструктивные решения могут быть разные:
- Магнит может вращаться вокруг оси, меняя полярности тем самым переключать контакты геркона.
- Между герконом и магнитом может перемещаться экранирующая магнитная шторка, для шунтирования поля;
- Подвижным может быть любой элемент, несколько, элементов или все, шторка, магнит и геркон, все определяют условия конкретного объекта.
Подключение герконового датчика
Схема управления освещением в прихожей
В комплекте с поплавковым датчиком поставляется документация, регламентирующая процесс подключения. Пошагово работают так:
- Узел для создания магнитного поля устанавливается на подвижную часть.
- Геркон фиксируется на неподвижной части конструкции.
- Замыкание цепи. Подвижная часть должна примыкать плотно для воздействия магнитным полем катушки на контакты.
- Получение информации об исправности установки.
- Уведомление о нарушении целостности. Катушка прекращает воздействовать на геркон.
Устанавливать датчики можно скрытым или наружным способом на конструкциях из стали или магнитопассивного типа.
Управление герконом по средствам катушки, через которую пропускается постоянный ток
Такой способ получил широкое применение в конструкциях герконовых реле с небольшим количеством групп контактов. В полый сердечник корпуса, на который намотана обмотка, помещают один или несколько герконов.
Элементы конструкции герконового реле РЭС -24
Примером такого использования являются токовые датчики защиты в электросетях питающих оборудование. Катушки наматываются достаточно толстым проводом, чтобы выдерживать токовые нагрузки, используемые на производственном процессе. При превышении тока магнитное поле отключает контакты геркона, оборудование обесточивается. Настройка осуществляется перемещением по резьбовому соединению геркона внутри катушки вдоль оси.
Преимущества
Герконовые датчики обладают следующими преимуществами:
- Полная герметичность позволяет использовать их в пожароопасных помещениях и агрессивных средах.
- Моментальное срабатывание позволяет использовать их в устройствах с высокой коммутационной частотой.
- Исключение дребезга контактов у ртутных датчиков. Они применяются в оборудовании с повышенными требованиями к чистоте сигнала.
- Малые габариты от 4 мм, простота конструкции, низкая стоимость изготовления.
- Высокая функциональность и универсальность реле.
- Возможность коммутировать маломощные сигналы.
- Большой температурный диапазон работы — от -55 до + 110 ºC.
- Высокая прочность сердечников.
- Отсутствие поверхностей трения.
Высокая универсальность, надежность и цена по-прежнему позволяют герконам соперничать с прямыми конкурентами.
Достоинства и недостатки
Применение герконов, конечно же, не так широко распространено, как, например, электромеханических реле, но всё же, они не являются дефицитными деталями. Поэтому остро вопрос, где же взять геркон, среди радиолюбителей не стоит. К несомненным преимуществам размыкающих герконов, впрочем, как и замыкающих, относится:
- высока надёжность — она превышает показатели обычных реле использующих открытые контакты почти в 100 раз;
- быстродействие — скорость срабатывания по сравнению с электромеханическими реле может быть быстрее в два-три раза;
- отсутствие шума;
- гальваническая развязка — их последовательное подключение в линию позволяет создать электрическую развязку управляющих и коммутируемых цепей;
- возможность коммутировать даже слабые по уровню сигналы;
- небольшой размер;
- долговечность — устройство способно совершить миллиарды включений, что обусловлено отсутствием трения;
- способность их работать без источника электроэнергии.
Благодаря своим свойствам герконы нашли применение в разнообразных датчиках позиционирования, измерительных приборах (велосипедный спидометр), в автоматических подъёмниках, выключателях, ноутбуках (регистрируют открытие и закрытие крышки) и даже в компьютерных клавиатурах.
Но, несмотря на это, герконы также имеют недостатки. Главный из них — хрупкость, из-за неё приборы нельзя использовать в местах сильной вибрации. Кроме этого, в результате износа площадок контакты могут «залипать», а в случае больших токов (нагрева) самопроизвольно размыкаться.
Но, как видно, на фоне достоинств недостатки не так уж и велики. Очень часто, используя геркон, радиолюбители собирают собственную недорогую систему сигнализации или автоматический блок включения света.
Формовка и обрезка выводов герконов
Длина и форма аксиальных выводов герконов не всегда удобны для применения в конкретном приборе. Однако необдуманная модификация может значительно сказаться на работе геркона. При резке и формировании выводов герконов важно использовать правильные опорные и режущие инструменты, чтобы избежать повреждения герметичных уплотнений «стекло-металл». Поврежденный корпус может иметь как незаметные глазу сколы, так и крупные трещины. Такие дефекты могут быть обнаружены визуально с использованием микроскопа с небольшим увеличением. Но бывают случаи, когда нарушается герметизация корпуса, и даже описанная выше методика измерения динамического сопротивления может не выявить заметного ухудшения. С течением времени в геркон будет попадать влага, и его функционирование будет нарушаться.
Для того, чтобы избежать повреждений, рекомендуется оставлять 1 мм длины вывода между точкой формовки либо обрезки – и корпусом геркона. При этом вывод геркона должен быть полностью зафиксирован, чтобы механическое напряжение при формовке или обрезке не передавалось на остальную часть вывода.
Рассмотрим основные способы формовки и обрезки выводов геркона.
- Обрезка выводов геркона с помощью бокорезов с двусторонней заточкой (рисунок 28) недопустима, так как при этом сила, деформирующая вывод, будет передаваться в сторону корпуса.
Рис. 28. Недопустимость обрезки выводов геркона бокорезами с двусторонней заточкой
Обрезка выводов бокорезами с односторонней заточкой допустима (рисунок 29), при этом надо помнить, что плоская сторона губок бокорезов должна находится со стороны корпуса геркона. Также следует обратить внимание на качество заточки и наличия люфта у используемого инструмента.
Рис. 29. Обрезка выводов геркона бокорезами с односторонней заточкой
- Обрезка выводов с помощью зажима, жестко фиксирующего контакты геркона (рисунки 30 и 31).
Рис. 30. Обрезка выводов геркона с помощью зажима (вариант 1)
Рис. 31. Обрезка выводов геркона с помощью зажима (вариант 2)
Обрезка выводов геркона с частичной фиксацией (рисунок 32) недопустима.
Рис. 32. Недопустимость обрезки выводов геркона с частичной фиксацией
- Формовка выводов геркона без фиксации вывода запрещена (рисунок 33), так как в таком случае деформации подвергается и часть вывода, уходящая в корпус геркона.
Рис. 33. Недопустимость формовки выводов геркона без фиксации
Формовка выводов геркона при фиксации вывода в двух точках, как показано на рисунке 34, допустима, так как опора В не дает деформироваться выводу в направлении от нее к корпусу геркона.
Рис. 34. Формовка выводов геркона при фиксации вывода в двух точках
Формовка при полной фиксации вывода геркона, как показано на рисунках 35 и 36, также допустима.
Рис. 35. Формовка вывода геркона при полной фиксации (вариант 1)
Рис. 36. Формовка вывода геркона при полной фиксации (вариант 2)
После правильной формовки и обрезки выводов геркона можно получить распространенные конфигурации, изображенные на рисунке 37.
Рис. 37. Распространенные конфигурации герконов
Рекомендации по защите
Если подключается герконовый датчик своими руками, то нужно учесть следующие моменты:
- Необходимо установить самую тонкую металлическую пластину. Её ставят между магнитом и герконовым датчиком для защиты.
- Магнитные и герконовые датчики нужно устанавливать так, чтобы они были направлены друг к другу. Расстояние при этом должно быть коротким.
Перспективы
Пик развития герконов пришёлся на 1970-е годы. В настоящее время во многих приложениях они вытесняются твердотельными элементами — датчиками Холла. Отличие геркона от датчика Холла:
С начала 2000-х годов наблюдается тенденция к применению миниатюрных герконов (с длиной герметизирующего баллона менее 15 мм). В таких конструкциях повышается чувствительность, быстродействие, резонансная частота, снижается время дребезга, но уменьшаются электрическая прочность изоляции, верхние пределы коммутируемых токов и напряжений, а также сила контактного нажатия и, как следствие, появляется проблема увеличения переходного сопротивления и снижения его стабильности. По состоянию на 2008 год, самый миниатюрный и наиболее чувствительный геркон в мире — с длиной баллона 4,31 мм — серийно производился американской компанией Hermetic Switch Inc., на 2017 год — с длиной баллона 4,01 мм той же компании. Однако неизвестно, каков процент выхода годной продукции подобных изделий. В 2005 году японская фирма OKI сообщила об изготовлении образцов герконов с длиной баллона всего 2 мм, однако о возможностях их промышленного производства ничего не известно.