Выбираем датчик уровня воды в резервуаре и емкости. Как мы помогали слепому дедушке. Делаем индикатор уровня жидкости в чашке своими руками

Выбираем датчики уровня воды в резервуара и емкостях: виды, принцип действия

Выбираем датчики уровня воды в резервуара и емкостях: виды, принцип действия

Конструкция и принцип действия

Конструктивное исполнение измерительных устройств данного типа определяется следующими параметрами:

  • Функциональностью, в зависимости от этого устройства принято делить на сигнализаторы и уровнемеры. Первые отслеживают конкретную точку заполнения резервуара (минимальную или максимальную), вторые осуществляют беспрерывный мониторинг уровня.
  • Принципом действия, в его основу может быть положены: гидростатика, электропроводность, магнетизм, оптика, акустика и т.д. Собственно, это основной параметр, определяющий сферу применения.
  • Методом измерения (контактный или бесконтактный).

Помимо этого, особенности конструкции определяет характер технологической среды. Одно дело — измерять высоту питьевой воды в баке, другое — проверять наполнение резервуаров для промышленных стоков. В последнем случае необходима соответствующая защита.

Виды датчиков уровня

В зависимости от принципа действия, сигнализаторы принято делить на следующие виды:

  • поплавочного типа;
  • использующие ультразвуковые волны;
  • устройства с емкостным принципом определения уровня;
  • электродные;
  • радарного типа;
  • работающие по гидростатическому принципу.

Поскольку эти типы наиболее распространены, рассмотрим каждый из них в отдельности.

Поплавковый

Это наиболее простой, но, тем не менее, действенный и надежный способ измерения жидкости в баке или другой емкости. С примером реализации можно ознакомиться на рисунке 2.

Поплавковый датчик для управления насосом
Рис. 2. Поплавковый датчик для управления насосом

Конструкция состоит из поплавка с магнитом и двух герконов, установленных в контрольных точках. Кратко опишем принцип действия:

  • Емкость опустошается до критического минимума (А на рис. 2), при этом поплавок опускается до уровня, где расположен геркон 2, он включает реле, подающее питание на насос, закачивающий воду из скважины.
  • Вода доходит до максимальной отметки, поплавок поднимается до места расположения геркона 1, он срабатывает и реле отключается, соответственно, двигатель насоса прекращает работать.

Такой герконовый сигнализатор сделать самостоятельно довольно просто, а его настройка сводится к установке уровней включения-выключения.

Заметим, что если правильно выбрать материал для поплавка, датчик уровня воды будет работать, даже при наличии слоя пены в резервуаре.

Ультразвуковой

Этот тип измерителей может использоваться как для жидкой, так и сухой среды, при этом у него может быть аналоговый или дискретный выход. То есть, датчик может ограничивать заполнение по достижению определенной точки или отслеживать его постоянно. Устройство включает в себя ультразвуковой излучатель, приемник и контроллер обработки сигнала. Принцип работы сигнализатора продемонстрирован на рисунке 3.

Принцип работы ультразвукового датчика уровня
Рис. 3. Принцип работы ультразвукового датчика уровня

Работает система следующим образом:

  • излучается ультразвуковой импульс;
  • принимается отраженный сигнал;
  • анализируется длительность затухания сигнала. Если бак полный, она будет короткой (А рис. 3), а по мере опустошения начнет увеличиваться (В рис. 3).

Ультразвуковой сигнализатор бесконтактный и беспроводной, поэтому он может использоваться даже в агрессивных и взрывоопасных средах. После первичной настройки, такой датчик не требует никакого специализированного обслуживания, а отсутствие подвижных частей существенно продлевает срок эксплуатации.

Электродный

Электродные (кондуктометрические) сигнализаторы позволяют контролировать один или несколько уровней электропроводящей среды (то есть, для измерения наполнения бака дистиллированной водой они не подходят). Пример использования устройства приведен на рисунке 4.

Измерение уровня жидкости кондуктометрическими датчиками
Рисунок 4. Измерение уровня жидкости кондуктометрическими датчиками

В приведенном примере задействован трехуровневый сигнализатор, в котором два электрода контролируют заполнение емкости, а третий является аварийным, для включения режима интенсивной откачки.

Емкостной

При помощи этих сигнализаторов можно определять максимальное заполнение емкости, причем, в качестве технологической среды могут выступать как жидкость, так и сыпучие вещества смешанного состава (см. рис. 5).

Емкостной датчик уровня
Рис. 5. Емкостной датчик уровня

Принцип работы сигнализатора такой же, как у конденсатора: проводится измерение емкости между пластинами чувствительного элемента. Когда она достигнет порогового значения, подается сигнал на контроллер. В некоторых случаях задействовано исполнение «сухой контакт», то есть уровнемер работает через стенку бака в изоляции от технологической среды.

Данные устройства могут функционировать в широком температурном диапазоне, на них не влияют электромагнитные поля, а срабатывание возможно на большом расстоянии. Такие характеристики существенно расширяют сферу применения вплоть до тяжелых условий эксплуатации.

Радарный

Этот вид сигнализаторов можно действительно назвать универсальным, поскольку он может работать с любой технологической средой, включая агрессивную и взрывоопасную, причем, давление и температура не будут влиять на показания. Пример работы устройства приведен на рисунке ниже.

Измерение уровня радарным датчиком
Измерение уровня радарным датчиком

Устройство излучает радиоволны в узком диапазоне (несколько гигагерц), приемник ловит отраженный сигнал и по времени его задержки определяет наполняемость емкости. На измеряющий датчик не влияет давление, температура или характер технологической среды. Запыленность также не отражается на показаниях, чего не скажешь о лазерных сигнализаторах. Также необходимо отметить высокую точность приборов данного типа, их погрешность составляет не более одного миллиметра.

Гидростатический

Эти сигнализаторы могут измерять как предельное, так и текущее заполнение резервуаров. Их принцип действия продемонстрирован на рисунке 7.

Измерение заполнения гиростатическим датчиком
Рисунок 7. Измерение заполнения гиростатическим датчиком

Устройство построено по принципу измерения уровня давления, произведенного столбом жидкости. Приемлемая точность и небольшая стоимость сделали данный вид довольно популярным.

В рамках статьи мы не можем осмотреть все типы сигнализаторов, например, ротационно-флажковых, для определения сыпучих веществ (идет сигнал, когда лепесток вентилятора застрянет в сыпучей среде, предварительно вырыв приямок). Так же нет смысла рассматривать принцип действия радиоизотопных измерителей, тем более рекомендовать их для проверки уровня питьевой воды.

Ультразвуковые датчики уровня воды

Датчик уровня воды

По принципу работы и схеме устройства ультразвуковые датчики схожи с радарными. Только в данных приборах используется ультразвук. При помощи генератора создается ультразвуковое излучение. После достижения поверхности воды оно отражается и попадает через определенное время на приемник датчика. Достоинства можно выделить такие же, как и в радарном приборе. Только схема устройство проще, а показатели не такие точные.

Читайте также:  Дровокол винтовой в помощь сельчанину

Индикатор уровня воды в баке на микроконтроллере PIC16F628A

  • Автор: Ерёмин Антон
  • Комментарии (8)

Индикатор(датчик) уровня воды на микроконтроллере PIC16F628А – устройство, которое позволит визуально контролировать уровень воды в непрозрачной ёмкости. Предлагаемое устройство может пригодиться всем, у кого есть загородный дом с летним душем или дача, огород, да что угодно лишь была бы емкость с водой. После некоторых модернизаций из индикатора получилось реле уровня воды.

Сам индикатор состоит из двух основных частей:

  1. Датчики уровня воды;
  2. Электроника, которая обрабатывает информацию, полученную от датчиков.

Теперь подробнее рассмотрим каждую из составных частей индикатора.

О схеме.

Схема индикатора собиралась из того, что было под рукой, и разрабатывалась вообще для микроконтроллера PIC16F84, но позже было принято решение добавить поддержку более дешевого и доступного микроконтроллера — PIC16F628A.

Принципиальная схема индикатора уровня воды (рисунок 1) проста, как пять копеек. FM приемник на RDA5807 — проще не бывает!

Рисунок 1 — Принципиальная схема индикатора уровня воды на микроконтроллере PIC16F628A

Рассмотрим основные узлы. Сердцем устройства является микроконтроллер PIC16F628A фирмы Microchip. Для стабильного питания которого, применяется выпрямитель на диодном мосте, конденсаторах и интегральном стабилизаторе L7805.

Для понижения напряжения настоятельно рекомендуется применить понижающий трансформатор, который обеспечит необходимую гальваническую развязку. Гасящие конденсаторы лучше не ставить, так как появляется риск оказаться под опасным потенциалом напряжения.

Датчики подключаются к схеме через барьерные резисторы.

Четыре светодиода отображают текущее количество воды в емкости. В зависимости от того какой датчик замыкает с общим проводом, светодиод того датчика и будет светиться. Весь перечень деталей сведён в таблицу 1.

О датчиках.

В качестве датчиков используются тонкие хомуты из оцинкованной жести, которые, в свою очередь, располагаются на пластиковой трубе, на определенном расстоянии друг от друга. Труба крепится к тяжелому основанию(рисунок 2).

Рисунок 2 – Тяжелое основание для пластиковой трубы с датчиками.

К хомутам подводятся провода, соединяющие датчики и схему (можно использовать витую пару). Вся эта конструкция устанавливается в емкость с водой. Замыкать датчики между собой будет вода. Расстояния между датчиками выбираются произвольные. В моем случае, емкость была условно разделена на три части, и по уровню каждой части на трубе был установлен хомут. Если для емкости был предусмотрен перелив, то последний хомут должен быть установлен на уровне перелива.

Конструкция датчиков может быть и иной. Главное соблюдать требуемую последовательность.

Как работает.

Работает такая конструкция очень просто. На самом низу трубы (или на основании) крепится общий провод для работы с датчиками. Относительно этого провода будут происходить все измерения. Вода, наполняя емкость, постепенно начнет замыкать общий провод с датчиками. Первый на очереди — датчик 1. Когда общий провод с ним замкнется тогда включиться первый светодиод. Далее к первому датчику добавится второй датчик, при этом включится второй светодиод, а первый выключиться и т.д. Когда произойдет замыкание с четвертым датчиком — включиться четвертый светодиод. Который, в свою очередь, будет мерцать с частотой 2 Гц.

Подобный алгоритм работы можно легко организовать на обычной логике. Так поначалу и делалось, однако, из-за частых ошибочных состояний, было принято решение заменить схему на современное микроконтроллерное устройство. Рабочая программа для PIC-микроконтроллера была написана на языке ассемблер и отлажена в программе MPLab 8.8

Моделирование.

Работа устройства моделировалась в программе протеус см. рисунок 3. Модель сделана для микроконтроллера PIC16F84A! Внимательно выбираем прошивку.

Рисунок 3 – Модель уровня воды на микроконтроллере.

О печатной плате.

Печатная плата получилась размерами 55х50мм (рисунки 4-5 . не в масштабе) .

Рисунок 4 – Печатная плата индикатора уровня воды в баке на микроконтроллере PIC16F628A (низ) не в масштабе.

Рисунок 5 – Печатная плата индикатора уровня воды в баке на микроконтроллере PIC16F628A (верх) не в масштабе.

Внешний вид индикатора показан на рисунке 6.

Рисунок 6 – Готовая плата индикатора уровня воды.

Корпус.

Схему готового индикатора разместил в корпусе небольшого приемника рисунки 7-8.

Рисунок 6 – Готовая плата индикатора уровня воды на микроконтроллере PIC16F628A в корпусе приемника.

Рисунок 7 – Кнопка включения питания.

Отверстия для динамика заклеил клеем, а на лицевую сторону приклеил глянцевую фотография рисунки 8-9

Индикатор, собранный из заведомо рабочих деталей, начинает работать сразу и в наладке не нуждается.

Рисунок 8 – Заклееные отверстия.

Рисунок 9 – Лицевая панель индикатора уровня воды на микроконтроллере PIC16F628A.

↑ Описание работы и видео в действии

После успешной калибровки прибор отображает объем воды в литрах и уровень в десятках процентов на линейке светодиодов. Также становятся доступными функции наполнения и слива бака. В приборе предусмотрено автоматическое наполнение, которое неактивно после подачи питания. Для активации автоматического наполнения необходимо нажать кнопку «Наполнить» после чего бак наполнится на 90%.
При наполнении бака, уровень на светодиодной линейке будет отображаться как при зарядке аккумулятора в телефоне. Повторное наполнение включиться автоматически при отпускании уровня ниже 10%. Наполнение бака можно запускать в любой момент. Для остановки наполнения нужно нажать кнопку «Слить» во время наполнения. Функция слива предусмотрена для вывода бака из эксплуатации на зимний период. Может быть, и не очень нужная функция, прибор опытный трудно вот так все сразу продумать, пускай пока будет.
Для активации слива нажимаем кнопку «Слить», включается реле включения клапана слива. Реле выключается при достижении нулевого уровня после задержки необходимой для слива воды с трубопровода. Теперь, во время слива, батарейка — бак будет уже не заряжаться, а разряжаться. После активации слива, режим автоматического наполнения выключается, повторно включить его можно нажав на кнопку «Наполнить».
Вот собственно и все, смотрим демо-видео.

Видео прототипа:

Материалы для изготовления датчика уровня воды

  1. муфта соединительная д. 50 мм, 2 шт.;
  2. заглушка д. 50 мм, 2 шт.;
  3. хомуты пластиковые, 2 шт.;
  4. профили пластиковые мебельные;
  5. кембрик термоусадочный д.30-40 мм;
  6. пластмассовая пластина т. 4-6 мм;
  7. заклепки 10 шт.;
  8. магнит неодимовый 1 шт.;
  9. герконы 3 контакта, 2 шт.;
  10. кнопка (выключатель) низковольтный 1 шт.;
  11. резистор 680-1,5к. 1 шт.;
  12. светодиоды, 3 шт.;
  13. провода низковольтные 5-и жильные;
  14. штекер 4 ножки;
  15. термоклей, силикон;
  16. питание 12В, батарейка на 3В.

Из инструментов понадобятся:

  • электродрель;
  • термопистолет;
  • строительный фен;
  • паяльник;
  • отвертки, пассатижи и т.д.

Как выбрать?

Выбор датчика уровня воды в резервуаре зависит от многих факторов, основные из них:

  • Состав жидкости. В зависимости от содержания в воде посторонних примесей может меняться плотность и электропроводность раствора, что с большой вероятностью отразится на показаниях.
  • Объем резервуара и материал, из которого он изготовлен.
  • Функциональное назначение емкости для накопления жидкости.
  • Необходимость контролировать минимальный и максимальный уровень, или требуется мониторинг текущего состояния.
  • Допустимость интеграции в систему автоматизированного управления.
  • Коммутационные возможности устройства.

Это далеко не полный список для выбора измерительных приборов данного типа. Естественно, что для бытового назначения можно существенно сократить критерии отбора, ограничив их объемом резервуара, типом срабатывания и схемой управления. Существенное сокращение требований делает возможным самостоятельное изготовление подобного устройства.

Схема электрическая принципиальная.

Схема электрическая принципиальная устройства показана на рисунке 5. Обработку сигналов с датчика уровня жидкости осуществляет микроконтроллер U1 ATtiny2313A. Сигналы поступают через разъем XP2на порт PINB. Микроконтроллер обрабатывает прерывания изменения уровня на ножкахPINB0..1 и PINB3..7 и в случае замыкания на землю любого из указанных выводов определяет и запоминает последний замкнутый контакт. Замкнутый контакт геркона соответствует одному из семи уровней жидкости. Далее, вычисленный уровень жидкости отображается на LED-индикаторе (VD1..7) – светится светодиод соответствующего уровня и все светодиоды нижних уровней. Резисторы R4..R10 ограничивают ток светодиодов. В случае, если поступил сигнал последнего (седьмого) уровня, то все семь светодиодов начинают прерывисто мигать с интервалом 0.5 секунды и раздается прерывистый сигнал пьезокерамического излучателя HA1. Пьезокерамический излучатель на седьмом уровне издает 100 бипов и отключается, при этом семь светодиодов продолжают прерывисто мигать до изменения уровня жидкости или отключения устройства. Транзистор VT1 управляет пьезокерамическим излучателем HA1. Резисторы R2..R3обеспечивают режим работы транзистора VT1. Устройство питается от источника постоянного стабилизированного напряжения 5 Вольт. Конденсаторы C1 и C2 предназначены для защиты цепей питания от перепадов напряжения и импульсных помех. Резистор R1 и конденсатор С3 обеспечивают сброс микроконтроллера при включении. Фьюзы микроконтроллера должны иметь следующие значения 0xFF, 0xDF, 0xE4 (Extended, High, Low).

Рисунок 5. Схема электрическая принципиальная.

Указатель уровня воды своими руками

Схема указателя уровня воды.

Схема очень простая, но работает прекрасно. В конце статьи будет видео, где наглядно показана работа этого указателя уровня воды, который мы сделаем вместе с вами.
Для начала работы соберём детали, которые нам потребуются для изготовления устройства.

Детали для изготовления схемы указателя уровня воды.

Нам понадобится:
Микросхема ULN2004 или ей подобная, контактная площадка для установки микросхемы на плату. При наличии такой площадки отсутствует риск перегреть ножки микросхемы паяльником или повредить её внутреннее устройство статическим электричеством. Да и ремонт схемы, при необходимости, сокращается до нескольких секунд. Достаточно вынуть из гнезда горелую микросхему и вставить на её место новую. Сплошная выгода, особенно для не очень опытных радиолюбителей.
Резисторы R1 — R7 — 47Kom.
R8 — R14 — 1Kom.
Светодиоды любого цвета по вашему выбору, диаметром 3 — 5 мм.
Конденсатор 100Mkf 25v.
Клеммные колодки любого типа, а можно и вообще без них, но удобство пользования устройством несколько снизится.
Макетная плата любая, лишь бы все компоненты влезли. Я пользуюсь такими платами, потому что не хочется заморачиваться на изготовление печатной платы, просто так мне удобнее и более привычно.

Компоненты все собрали и приступаем к изготовлению нашего устройства.

Это первый готовый элемент будущей системы очистки воды от железа, бактерий, всяческих вредных примесей и прочей «каки». Система у меня дома работает уже почти три года, показала себя как надёжная, удобная и вообще мне нравится. Качеством воды полностью доволен. Но настало время для модернизации. Появились новые требования (у меня), хочется чтобы было более удобное обслуживание, хочу чтобы вся информация о работе системы была постоянно перед глазами. Первую систему очистки воды я строил без всякого опыта и допустил некоторые ошибки, о которых непременно напишу в следующих статьях, но в целом было всего две незначительных поломки. В одной поломке виноват я, а в другой не качественное комплектующее изделие (опять я виноват, немного сэкономил и купил не то, что следовало).

Всё оборудование будет блочным (так возрастают возможности модернизации и упрощается ремонт), по возможности дешёвым и простым, чтобы многие могли повторить.

Для чего нужны белые проводки расскажу в одной из следующих статей.
Указатель (сигнализатор) уровня воды готов.

Кабель, который идёт к датчикам уровня, можно поставить любой восьмижильный сигнальный, их продают сейчас всякие и в разных магазинах, которые занимаются сигнализацией, электрикой. Сечение жил и длина кабеля не играют особой роли. Есть кабели совсем тоненькие и дешёвые.

Как изготовить датчики уровня, нужно думать и изготавливать по месту применения. Контакты датчика выполнить лучше всего из нержавейки. Плюсовой общий электрод нужен массивный. Я делал из маленькой нержавеющей ложки, электрод работает нормально и совсем не поддаётся электрохимическому растворению. Места где припаиваются провода к электродам, лучше всего заизолировать при содействии любого клеевого пистолета (надёжно сохраняются от растворения).

Впрочем, если запитать схему посредством кнопки без фиксации, то растворения не будет. Нужно посмотреть, сколько воды — нажал на кнопку. Отпустил и питание схемы выключилось. На даче питание схемы можно применить от батареек или пальчиковых аккумуляторов, соединённых последовательно, и с кнопкой (хватит на длительный период) или от старенького аккумулятора. Данное устройство не требовательно к напряжению питания.

Делитесь, пожалуйста, в социальных сетях, если вам не жалко, может быть кому – то тоже пригодится эта простая, но нужная в хозяйстве вещь.
Смотрите видео испытания уровня воды.

Получайте на почту подборку новых самоделок. Никакого спама, только полезные идеи!

*Заполняя форму вы соглашаетесь на обработку персональных данных

Комплектующие

По традиции переходим к комплектующим, набор деталей довольно большой:

1 Микроконтроллер ATMega328P или плата Arduino
1 HC-SR04 ультразвуковой модуль (также известный как датчик PING)
1 10K резистор
1 Кристалл 16 МГц
2 22pf дисковые конденсаторы
Провода-перемычки
1 Регулятор LM7805 5V
1 9В батарея и разъем
1 Электролитический конденсатор 10uF
1 Макетная плата (или печатная плата)
1 Инструмент для зачистки проводов

↑ Передняя панель

Для передней панели была изготовлена наклейка. Приятным бонусом для меня оказалось то, что при печати на прозрачном полимере краски получаются полупрозрачными, это позволило мне отказаться от светофильтра индикатора, я просто сделал прямоугольную заливку красного цвета.

Поскольку минимальный формат печати оказался А3, то наклеек я заказал три варианта в двух экземплярах. Мне больше понравился темный. Ну, или если надоест, то всегда можно заказать новую наклейку.

Датчик и регулятор уровня воды в баке

Датчик уровня воды своими руками схема

Предлагаем собрать простой датчик уровня воды и его контроллер. Как правило такие датчики работают с использованием электрической проводимости воды, так как не всегда получается использовать какой-либо плавающий переключатель. Здесь насос должен начинать качать каждый раз, когда вода достигает слишком низкого уровня, и должен прекращать накачку, когда вода достигает высокого уровня.

Когда вода израсходована, а ее уровень немного ниже высокого уровня, схема должна снова включить насос и выключить его, когда поверхность воды снова коснется электрода, отвечающего за сигнализацию верхнего уровня воды. Этот процесс будет повторяться до тех пор, пока питание не будет отключено.

Поэтому пришлось спроектировать электронную схему, которая была бы надежна и имела длительный срок службы.

Возможности схемы

  1. Поддерживать уровень воды между «высоким» и «низким», то есть между соответствующими электродами, установленными в баке.
  2. Защита насоса, если уровень воды в баке падает ниже уровня, обеспечивающего нормальную его работу.
  3. Использована простейшая схема управления на базе CD4001.

Тут микросхема CD4001 подключена как триггер SR:

А вот как она будет управлять насосом:

Небольшой трансформатор на 220 В переменного тока, понижающий в 12 вольт с силой тока 250 мА подключается к плате источника питания через разъемы X1-1 и X1-2.

Трансформатор обеспечивает низкое напряжение необходимое для питания контроллера и обеспечивает гальваническую развязку между цепью управления и сетью.

Чтобы свести к минимуму количество используемых компонентов, микросхема CD4001 использовалась для создания одного блока питания для обоих компонентов, цепи управления и реле.

Кроме того, контроллер содержит два светодиода, один зеленый — чтобы указать когда насос работает, а другой красный — чтоб сигнализировать когда насос находится в защитном режиме. Зеленый светодиод загорается при каждом включении реле.

Этот LED вместе с токоограничивающим резистором подключен параллельно катушки реле. Если красный светодиод включен, насос с зеленым светодиодом останется выключенным.

Когда красный светодиод гаснет, насос и зеленый светодиод могут включаться при необходимости.

Цепь, состоящая из транзисторов Q1 и Q2, предназначена для включения красного светодиода (защита насоса) каждый раз, когда уровень воды находится между уровнем электрода насоса и электродом, размещенным на дне. Q1 будет закрыт, пока уровень воды остается ниже защитного уровня. Ток базы Q1 слишком мал, менее 1 мкА. Q1 и Q2 собраны по схеме Дарлингтона, поэтому Q2 может активировать красный LED при необходимости.

IC1-B — это логический элемента «И», что означает каждый раз, когда необходимо заполнить резервуар и достичь уровня защиты насоса, он откроет транзистор Q3, который запустит водяной насос.

Список деталей

Резисторы:

  • 3x — 2,2 мОм 1/4 Вт (R1, R2, R3)
  • 1x — 4,7 кОм 1/4 Вт (R4)
  • 1x — 120 кОм 1/4 Вт (R5)
  • 2x — 470 Ом 1/2 Вт (R6, R7)
  • 1x — 15 кОм 1/4 Вт (R8)

Конденсаторы:

  • 1x — 330 мкФ 63 В (С1)
  • 1x — 220 мкФ 25 В (С2)
  • 1x — 1 мкФ 63 В (С3)

Полупроводники:

  • 5x — 1N4004 (D1, D2, D3, D4, D5)
  • 1x — CD4001 (IC1)
  • 1x — 7812T (IC2)
  • 1x — Зеленый светодиод (LED1)
  • 1x — Красный светодиод (LED2)
  • 2x — 2N3904 (Q1, Q3)
  • 1x — 2N3906 (Q2)

Прочее:

  • 1x — реле 12 В (RLY1) Jameco P/N: 144186
  • 4x — 2 клеммных разъема (X1, X2, X3, X4)
  • 1x — 14-контактный разъем для микросхемы
  • 1x — 220 В / 12 В при токе 250 мА адаптер переменного тока.

При сборке сначала припаяйте пассивные компоненты, то есть резисторы и электролитические конденсаторы, обращая внимание на их полярность. Затем припаяйте компоненты блока питания, такие как диоды и стабилизаторы напряжения, также обращая внимание на цоколевку.

Установите 14-контактную панельку на печатной плате, а затем припаяйте ее. Наносите столько припоя, сколько нужно для пайки каждого провода. Слишком большое количество припоя может привести к тому, что отдельные контакты зальются.

Используйте для проверки внешний источник питания постоянного тока +15 В или две 9-вольтовые батареи, соединенные последовательно. Напряжение, измеренное между контактами 14 (Vdd) и 7 (GND), должно составлять +12 В +/- 2%. Если напряжение такое же, как указано выше, можете перейти к следующему шагу.

Установите транзисторы NPN 2N3904 в месте Q1 и Q3 следя за тем, чтобы все контакты вошли в соответствующие отверстия. Тщательно припаяйте каждый вывод. Установите транзистор Q2, то есть 2N3906 PNP, таким же образом.

Установите зеленый светодиод в месте, обозначенном как LED1. Коротким концом является катод. Если светодиод установлен в обратном направлении, он не загорится.

Сделайте то же самое с красным светодиодом, который должен быть установлен в месте, обозначенном как LED2.

Затем установите два двойных разъема. Установите один разъем в месте X1 и один в месте X4, а затем припаяйте их так, чтобы их выходы были обращены к краю печатной платы.

Возьмите два других разъема и затем соедините их вместе, вдавив язычок одного из них в паз на другом.

Такие собранные разъемы должны быть припаяны вместо X2 и X3, так же, как и прежде, обратите внимание, что их выходы направлены к краю платы.

Установите реле RLY1 и припаяйте его. После этого плата контроллера будет готова. Чтобы подготовить устройство к тестированию, поместите интегральную микросхему CD4001 в ранее припаянную панельку.

Поместите собранную печатную плату на непроводящую поверхность, чтобы предотвратить случайное закорачивание точек пайки проводящими ток предметами.

Подключите пару проводов длиной около 30 сантиметров, а затем зачистите их концы.

Вставьте один конец кабеля в разъем на плате контроллера с надписью «Земля», а затем поместите конец другого провода в разъем, описанный как «защита уровня насоса», оставляя другие концы свободными.

Подключите источник питания к схеме. Если блок питания правильно подключен к плате и вся печатная плата собрана без ошибок, должен загореться красный светодиод.

Если соедините два провода вместе, красный светодиод должен погаснуть, а зеленый загореться. Вы также должны услышать тихий щелчок в реле. При размыкании концов кабеля выключится зеленый светодиод, красный светодиод загорится.

Если все работает как описано выше, значит схема была собрана правильно.

Пластиковый контейнер наполните водой. Не отключайте питание от схемы. Красный светодиод должен гореть, а два изолированных провода не должны касаться друг друга. Поместите концы проводов в емкость с водой.

Красный светодиод должен погаснуть, а зеленый загореться. Реле снова издаст тихий звук. Удалите проводники из воды, зеленый светодиод должен погаснуть, а красный загореться.

Если этот тест также был успешным, значит схема работает нормально.

Тест питания

Теперь пришло время протестировать самодельный контроллер с питанием от трансформатора 220 В / 12 В.

Подключите 12 В переменного тока от трансформатора к разъемам на плате контроллера, помеченным как 12 В AC. Подключите первичную обмотку трансформатора с помощью внешнего кабеля к сети.

Схема должна вести себя так же, как при использовании постоянного напряжения. Если это так, можно перейти к следующему тесту.

Имитация работы насоса

Подготовьте другую пару проводов той же длины, что и те, которые уже подключены к плате контроллера, зачистите их и подключите первый провод к клемме «низкий уровень», а второй провод к клемме «высокий уровень».

Когда концы защитного кабеля насоса и «Земля» погружены в емкость с водой, должен гореть зеленый светодиод. Теперь погрузите в тот же контейнер с водой, что и предыдущие кабели с кабелем «низкого уровня».

Зеленый светодиод должен гореть, а затем погрузив провод «высокого уровня» в тот же контейнер с водой, зеленый светодиод должен погаснуть. Это испытание имитировало заполнение резервуара водой через насос.

Чтобы смоделировать сбор воды из контейнера, можете удалить провод «высокого уровня» из контейнера для воды, схема должна вести себя одинаково все время. Теперь удалите кабель низкого уровня из воды. Зеленый светодиод должен гореть, а реле должно включать насос.

Если схема успешно прошла все тесты, то контроллер уровня воды готов к использованию — можете испытывать его на практике. Электроды которые действуют как датчики, должны располагаться вертикально сверху вниз в резервуаре для воды.

Чтобы предотвратить коррозию электродов стоит сделать их из нержавеющего материала (для увеличения срока службы). Если электроды будут проходить через стенку резервуара, обязательно загерметизируйте отверстия, чтобы предотвратить утечку.

Преимущества и недостатки

Преимущества ультразвуковых уровнемеров:

  • производство измерений без непосредственного контакта с жидкой средой, что позволяет работать с агрессивными жидкостями. К приборам не предъявляются повышенные требования к защищенности от негативных факторов внешней среды;
  • возможность измерения уровня без проникновения внутрь емкости, размещая датчик снаружи;
  • цена ниже другого типа бесконтактных сенсоров — радарных датчиков, вследствие более простой конструкции и менее дорогих комплектующих;
  • отражение ультразвука происходит от границы жидкости и газа, поэтому точность измерения не зависит от плотности жидкой среды, ее химических и физических свойств;
  • компактность;
  • мультисенсорность. Датчик служит для получения дополнительной информации о состоянии жидкости и емкости. Зависит от конкретной модели прибора.

ультразвуковой уровнемер
ультразвуковой уровнемер

Недостатки сенсоров уровня жидкости:

  • ошибочные данные из-за отражения ультразвуковых сигналов от конструктивных элементов емкости. Необходимо на стадии монтажа прибора не допускать нахождения элементов конструкции во фронтальной плоскости датчика. В узких баках ультразвуковые датчики не применяются;
  • показания прибора будут ошибочными при давлении газовой среды, большем или меньшем атмосферного. В вакууме прибор работать не будет. В подобных случаях необходимы сенсоры, использующие другие физические принципы;
  • зависимость точности измерений от температуры и состава газовой среды, ее влажности, загрязненности, запыленности;
  • искажения результатов измерений при образовании на поверхности жидкости пены либо турбулентных завихрений.

Сенсор уровня жидкости
Сенсор уровня жидкости

Как подобрать нужный

При выборе ультразвукового измерителя уровня необходимо учитывать:

  • свойства жидкости;
  • материал, из которого изготовлен резервуар, его влияние на точность измерений;
  • используемую схему обработки измерительной информации;
  • оснащение сенсора дисплеем для отображения данных и изменения настроек;
  • наличие сертификатов;
  • влияние перепадов температуры и иных внешних факторов на точность измерения;
  • материал, из которого устройство выполнено.

ультразвуковой измеритель
ультразвуковой измеритель

Вещества

Большое преимущество ультразвуковых датчиков уровня – точность измерения не зависит от физико-химических свойств жидкости: плотности, химической активности, электропроводимости и др. Прибор будет работать с водой, с молоком, с серной кислотой, нефтью. Однако в некоторых случаях они не применяются:

  • для контроля уровня кипящих жидкостей. Образующиеся при кипении воздушные пузыри имеют отличные от жидкости параметры отражения акустических волн – результаты измерений искажается;
  • при образовании на поверхности жидкости пены, которая рассеивает и поглощает ультразвуковой сигнал;
  • при контроле жидкостей, требующих постоянного перемешивания. Образующиеся при этом кавитация и вихреобразные воронки искажают отраженный сигнал, и точность измерений снижается.

ультразвуковой датчик уровня
ультразвуковой датчик уровня

Материал резервуара

Материал резервуара, внутри которого установлен акустический датчик, не влияет на точность измерений прибора. Наиболее сильный отраженный сигнал приходит от границы сред, а вторичное эхо от стен емкости слабое и откалиброванным прибором не улавливается.

Когда в силу технологических факторов, соблюдения мер безопасности и т. д., датчик внутрь емкости установить нельзя, для измерения уровня жидкости используется метод многократного отражения звуковых колебаний от внутренних стенок. Метод подразумевает установку сенсора снаружи. Измерения возможны, если резервуар изготовлен из металла, стекловолокна, стекла, пластика. Эти материалы хорошо отражают ультразвук, поэтому измерение уровня будет точным.

Многие сорта пластмасс, пористая резина и т. п. имеют близкие к жидкостям характеристики отражения ультразвуковых сигналов.

Если емкость изготовлена из этих материалов, применять наружный акустический датчик уровня жидкости нельзя, так как результаты измерений будут некорректными.

Резервуар
Резервуар

Схема обработки сигнала

Получаемый от датчика сигнал обрабатывается несколькими способами:

  1. Используется встроенный электронный блок для обработки данных, получаемых при измерениях. Информация отображается в цифровом или графическом виде на дисплее. Схема не предусматривает включение прибора в телеметрическую цепь управления и предназначена для информирования оператора об уровне жидкости в обследуемом резервуаре. Используется в переносных ультразвуковых уровнемерах для мониторинга жидкостей в герметичных емкостях.
  2. Полученный аналоговый сигнал преобразуется в цифровой прибором или дополнительным оборудованием. Получаемый сигнал передается на централизованный пульт управления. Прибор включается в единую сеть автоматического управления;
  3. Сигнализаторов контрольных точек используется как реле. При достижении жидкостью минимального запрограммированного уровня, датчик формирует сигнал, который в соответствии с заданной программой включает световую и звуковую сигнализацию, насос и т. п. Когда жидкость поднимется до следующей контрольной точки, датчик формирует команду на отключение сигнализации или насоса.

Схема обработки сигнала
Схема обработки сигнала

Наличие дисплея в комплектации

ЖК- дисплей отображает информацию о проводимых датчиком измерениях в реальном времени. Распространены 2 типа:

  • цифровой. Отображает цифровые значения измерений и простые статические графические изображения;
  • графический. Строит динамические графические изображения.

На дисплее отображается изменение уровня жидкости в виде динамической пиктограммы емкости. На экран выводится другая информация, получаемая сенсором: температура жидкости и газовой среды, давление, плотность и т.д.

С дисплеем удобно перепрограммировать прибор: последовательность шагов отображается на экране, подсвечиваются ошибки, выводится информация об успешном завершении процесса.

Промышленные образцы редко комплектуются дисплеями, так как рассчитаны на включение в единую систему управления.

ЖК- дисплей
ЖК- дисплей

Сертификаты на продукцию

Сертификация ультразвукового измерителя уровня – процедура, подтверждающая его соответствие определенным стандартам, подтверждаемая выдаваемыми свидетельствами:

  • сертификат соответствия требованиям Таможенного союза, которым подтверждается выполнение требований к продукции, установленных в технических регламентах Таможенного союза. Наиболее распространенный сертификат, так как для большинства групп продукции технические регламенты приняты и действуют;
  • сертификат соответствия ГОСТ Р – подтверждение проверки изделия компетентной организацией, в ходе которой доказано его соответствие международным и национальным стандартам, техническим условия, стандартам организаций. На ультразвуковые измерители уровня оформляется добровольный сертификат ГОСТ Р, так они не входят в перечень продукции, подлежащей обязательной сертификации, который утвержден Постановлением Правительства РФ от 01.12.2009 № 982;
  • сертификат взрывозащиты. Подтверждает соответствие изделий требованиям ТР ТС 012/2011 «О безопасности оборудования для работы во взрывоопасных средах» и возможность работы измерительных приборов во взрывоопасных средах.

Сертификация ультразвукового измерителя уровня
Сертификация ультразвукового измерителя уровня

Реакция датчиков уровня на перепады температуры

Скорость звука в воздухе растет с увеличением температуры. Для устранения ошибок в измерениях промышленные уровнемеры снабжаются термодатчиком. Показатели температуры учитываются микропроцессором сенсора при расчете скорости прохождения ультразвуковых волн.

Формула зависимости скорости звука в воздухе от температуры, полученная опытным путем:

С = С0 + 0,59*t°,

где С – скорость звука при измеренной температуре, С0 – скорость звука при температуре 0С°, t° — температура, измеренная термодатчиком, 0,59 – коэффициент, полученный на основании опытных измерений.

Если в сенсоре не предусмотрена автоматическая корректировка результатов измерений в зависимости от температуры, она проводиться вручную при каждом значительном перепаде температуры.  В противном случае прибор будет показывать неправильные значения уровня жидкости.

Реакция датчиков уровня на перепады температуры
Реакция датчиков уровня на перепады температуры

Влияние внешних факторов на работу

Кроме температуры газовой среды над жидкостью, на точность работы датчика влияют внешние факторы:

  • давление газовой среды. При его изменении скорость меняется, и датчик показывает неправильные значения;
  • сильная запыленность может нарушить работу измерителя;
  • из-за высокой влажности меняется скорость прохождения звуковых волн. Прибор покажет некорректные данные.

Расчет необходимых поправок в работу датчика – сложная задача. Над поверхностью жидкости создается газовая среда, насыщенная парами жидкости. Его физические свойства отличаются от характеристик атмосферного воздуха, который служил эталоном для калибровки приборов.

Для упрощения задачи часто применяются реперы – отражающие элементы, расположенные на строго фиксированных расстояниях от излучателя. Засекая время прохождения сигнала до репера и обратно, высчитывается скорость звука в газовой среде. Это значение используется для расчета уровня жидкости.

Наличие реперов усложняет и удорожает монтаж и эксплуатацию датчиков уровня.

Датчик
Датчик

Материал исполнения устройства

Датчики работают в условиях агрессивной среды: повышенная влажность, пары химически активных веществ, повышенное давление. Для безотказной работы корпусы датчиков изготовлены из алюминиевых сплавом или специальных, химически стойких пластмасс. Для пожаро и взрывозащищенности и предотвращения агрессивного воздействия испарений электрические схемы и корпус приборов заливаются компаундом. В результате датчик уровня жидкости может длительное время работать без обслуживания.

Back To Top